Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
RNA ; 27(6): 694-709, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33795480

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that function as critical posttranscriptional regulators in various biological processes. While most miRNAs are generated from processing of long primary transcripts via sequential Drosha and Dicer cleavage, some miRNAs that bypass Drosha cleavage can be transcribed as part of another small noncoding RNA. Here, we develop the target-oriented miRNA discovery (TOMiD) bioinformatic analysis method to identify Drosha-independent miRNAs from Argonaute crosslinking and sequencing of hybrids (Ago-CLASH) data sets. Using this technique, we discovered a novel miRNA derived from a primate specific noncoding RNA, the small NF90 associated RNA A (snaR-A). The miRNA derived from snaR-A (miR-snaR) arises independently of Drosha processing but requires Exportin-5 and Dicer for biogenesis. We identify that miR-snaR is concurrently up-regulated with the full snaR-A transcript in cancer cells. Functionally, miR-snaR associates with Ago proteins and targets NME1, a key metastasis inhibitor, contributing to snaR-A's role in promoting cancer cell migration. Our findings suggest a functional link between a novel miRNA and its precursor noncoding RNA.


Asunto(s)
Biología Computacional/métodos , MicroARNs/metabolismo , ARN Largo no Codificante/genética , Regiones no Traducidas 3' , Movimiento Celular , ARN Helicasas DEAD-box/metabolismo , Células HCT116 , Células HEK293 , Humanos , Carioferinas/metabolismo , Células MCF-7 , Nucleósido Difosfato Quinasas NM23/antagonistas & inhibidores , Nucleósido Difosfato Quinasas NM23/genética , Neoplasias/patología , ARN Largo no Codificante/metabolismo , Ribonucleasa III/metabolismo
2.
J Biol Chem ; 296: 100285, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33450231

RESUMEN

DNA methylation regulates gene transcription and is involved in various physiological processes in mammals, including development and hematopoiesis. It is catalyzed by DNA methyltransferases including Dnmt1, Dnmt3a, and Dnmt3b. For Dnmt3b, its effects on transcription can result from its own DNA methylase activity, the recruitment of other Dnmts to mediate methylation, or transcription repression in a methylation-independent manner. Low-frequency mutations in human DNMT3B are found in hematologic malignancies including cutaneous T-cell lymphomas, hairy cell leukemia, and diffuse large B-cell lymphomas. Moreover, Dnmt3b is a tumor suppressor in oncogene-driven lymphoid and myeloid malignancies in mice. However, it is poorly understood how the different Dnmt3b activities contribute to these outcomes. We modulated Dnmt3b activity in vivo by generating Dnmt3b+/- mice expressing one wild-type allele as well as Dnmt3b+/CI and Dnmt3bCI/CI mice where one or both alleles express catalytically inactive Dnmt3bCI. We show that 43% of Dnmt3b+/- mice developed T-cell lymphomas, chronic lymphocytic leukemia, and myeloproliferation over 18 months, thus resembling phenotypes previously observed in Dnmt3a+/- mice, possibly through regulation of shared target genes. Interestingly, Dnmt3b+/CI and Dnmt3bCI/CI mice survived postnatal development and were affected by B-cell rather than T-cell malignancies with decreased penetrance. Genome-wide hypomethylation, increased expression of oncogenes such as Jdp2, STAT1, and Trip13, and p53 downregulation were major events contributing to Dnmt3b+/- lymphoma development. We conclude that Dnmt3b catalytic activity is critical to prevent B-cell transformation in vivo, whereas accessory and methylation-independent repressive functions are important to prevent T-cell transformation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Leucemia Linfocítica Crónica de Células B/genética , Linfoma de Células B/genética , Linfoma de Células T/genética , Trastornos Mieloproliferativos/genética , Neoplasias Experimentales/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN (Citosina-5-)-Metiltransferasas/deficiencia , Metilación de ADN , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Heterocigoto , Homocigoto , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Linfocítica Crónica de Células B/enzimología , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B/enzimología , Linfoma de Células B/patología , Linfoma de Células T/enzimología , Linfoma de Células T/patología , Masculino , Ratones , Ratones Noqueados , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/patología , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/patología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , ADN Metiltransferasa 3B
3.
PLoS Genet ; 12(9): e1006334, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27690235

RESUMEN

DNA methyltransferase 3A (DNMT3A) is an enzyme involved in DNA methylation that is frequently mutated in human hematologic malignancies. We have previously shown that inactivation of Dnmt3a in hematopoietic cells results in chronic lymphocytic leukemia in mice. Here we show that 12% of Dnmt3a-deficient mice develop CD8+ mature peripheral T cell lymphomas (PTCL) and 29% of mice are affected by both diseases. 10% of Dnmt3a+/- mice develop lymphomas, suggesting that Dnmt3a is a haploinsufficient tumor suppressor in PTCL. DNA methylation was deregulated genome-wide with 10-fold more hypo- than hypermethylated promoters and enhancers, demonstrating that hypomethylation is a major event in the development of PTCL. Hypomethylated promoters were enriched for binding sites of transcription factors AML1, NF-κB and OCT1, implying the transcription factors potential involvement in Dnmt3a-associated methylation. Whereas 71 hypomethylated genes showed an increased expression in PTCL, only 3 hypermethylated genes were silenced, suggesting that cancer-specific hypomethylation has broader effects on the transcriptome of cancer cells than hypermethylation. Interestingly, transcriptomes of Dnmt3a+/- and Dnmt3aΔ/Δ lymphomas were largely conserved and significantly overlapped with those of human tumors. Importantly, we observed downregulation of tumor suppressor p53 in Dnmt3a+/- and Dnmt3aΔ/Δ lymphomas as well as in pre-tumor thymocytes from 9 months old but not 6 weeks old Dnmt3a+/- tumor-free mice, suggesting that p53 downregulation is chronologically an intermediate event in tumorigenesis. Decrease in p53 is likely an important event in tumorigenesis because its overexpression inhibited proliferation in mouse PTCL cell lines, suggesting that low levels of p53 are important for tumor maintenance. Altogether, our data link the haploinsufficient tumor suppressor function of Dnmt3a in the prevention of mouse mature CD8+ PTCL indirectly to a bona fide tumor suppressor of T cell malignancies p53.

4.
Proc Natl Acad Sci U S A ; 111(39): E4066-75, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25118277

RESUMEN

Aberrant expression of immature truncated O-glycans is a characteristic feature observed on virtually all epithelial cancer cells, and a very high frequency is observed in early epithelial premalignant lesions that precede the development of adenocarcinomas. Expression of the truncated O-glycan structures Tn and sialyl-Tn is strongly associated with poor prognosis and overall low survival. The genetic and biosynthetic mechanisms leading to accumulation of truncated O-glycans are not fully understood and include mutation or dysregulation of glycosyltransferases involved in elongation of O-glycans, as well as relocation of glycosyltransferases controlling initiation of O-glycosylation from Golgi to endoplasmic reticulum. Truncated O-glycans have been proposed to play functional roles for cancer-cell invasiveness, but our understanding of the biological functions of aberrant glycosylation in cancer is still highly limited. Here, we used exome sequencing of most glycosyltransferases in a large series of primary and metastatic pancreatic cancers to rule out somatic mutations as a cause of expression of truncated O-glycans. Instead, we found hypermethylation of core 1 ß3-Gal-T-specific molecular chaperone, a key chaperone for O-glycan elongation, as the most prevalent cause. We next used gene editing to produce isogenic cell systems with and without homogenous truncated O-glycans that enabled, to our knowledge, the first polyomic and side-by-side evaluation of the cancer O-glycophenotype in an organotypic tissue model and in xenografts. The results strongly suggest that truncation of O-glycans directly induces oncogenic features of cell growth and invasion. The study provides support for targeting cancer-specific truncated O-glycans with immunotherapeutic measures.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Animales , Adhesión Celular , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Exoma/genética , Glicómica , Glicosilación , Xenoinjertos , Humanos , Ratones , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Invasividad Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fenotipo , Proteómica , Transducción de Señal
5.
Mol Med ; 20: 290-301, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24800836

RESUMEN

Chronic lymphocytic leukemia (CLL) cells survive longer in vivo than in vitro, suggesting that the tissue microenvironment provides prosurvival signals to tumor cells. Primary and secondary lymphoid tissues are involved in the pathogenesis of CLL, and the role of these tissue microenvironments has not been explored completely. To elucidate host-tumor interactions, we performed gene expression profiling (GEP) of purified CLL cells from peripheral blood (PB; n = 20), bone marrow (BM; n = 18), and lymph node (LN; n = 15) and validated key pathway genes by real-time polymerase chain reaction, immunohistochemistry and/or TCL1 trans-genic mice. Gene signatures representing several pathways critical for survival and activation of B cells were altered in CLL cells from different tissue compartments. Molecules associated with the B-cell receptor (BCR), B cell-activating factor/a proliferation-inducing ligand (BAFF/APRIL), nuclear factor (NF)-κB pathway and immune suppression signature were enriched in LN-CLL, suggesting LNs as the primary site for tumor growth. Immune suppression genes may help LN-CLL cells to modulate antigen-presenting and T-cell behavior to suppress antitumor activity. PB CLL cells overexpressed chemokine receptors, and their cognate ligands were enriched in LN and BM, suggesting that a chemokine gradient instructs B cells to migrate toward LN or BM. Of several chemokine ligands, the expression of CCL3 was associated with poor prognostic factors. The BM gene signature was enriched with antiapoptotic, cytoskeleton and adhesion molecules. Interestingly, PB cells from lymphadenopathy patients shared GEP with LN cells. In Eµ-TCL1 transgenic mice (the mouse model of the disease), a high percentage of leukemic cells from the lymphoid compartment express key BCR and NF-κB molecules. Together, our findings demonstrate that the lymphoid microenvironment promotes survival, proliferation and progression of CLL cells via chronic activation of BCR, BAFF/APRIL and NF-κB activation while suppressing the immune response.


Asunto(s)
Factor Activador de Células B/genética , Leucemia Linfocítica Crónica de Células B/genética , Ganglios Linfáticos/metabolismo , FN-kappa B/genética , Microambiente Tumoral/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Médula Ósea/metabolismo , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Leucemia Linfocítica Crónica de Células B/sangre , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos B/genética , Bazo/metabolismo
6.
Nature ; 454(7208): 1137-41, 2008 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-18594513

RESUMEN

The E2F family is conserved from Caenorhabditis elegans to mammals, with some family members having transcription activation functions and others having repressor functions. Whereas C. elegans and Drosophila melanogaster have a single E2F activator protein and repressor protein, mammals have at least three activator and five repressor proteins. Why such genetic complexity evolved in mammals is not known. To begin to evaluate this genetic complexity, we targeted the inactivation of the entire subset of activators, E2f1, E2f2, E2f3a and E2f3b, singly or in combination in mice. We demonstrate that E2f3a is sufficient to support mouse embryonic and postnatal development. Remarkably, expression of E2f3b or E2f1 from the E2f3a locus (E2f3a(3bki) or E2f3a(1ki), respectively) suppressed all the postnatal phenotypes associated with the inactivation of E2f3a. We conclude that there is significant functional redundancy among activators and that the specific requirement for E2f3a during postnatal development is dictated by regulatory sequences governing its selective spatiotemporal expression and not by its intrinsic protein functions. These findings provide a molecular basis for the observed specificity among E2F activators during development.


Asunto(s)
Factores de Transcripción E2F/metabolismo , Desarrollo Embrionario , Crecimiento , Animales , Células Cultivadas , Factores de Transcripción E2F/deficiencia , Factores de Transcripción E2F/genética , Factor de Transcripción E2F1/deficiencia , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F2/deficiencia , Factor de Transcripción E2F2/genética , Factor de Transcripción E2F2/metabolismo , Factor de Transcripción E2F3/deficiencia , Factor de Transcripción E2F3/genética , Factor de Transcripción E2F3/metabolismo , Pérdida del Embrión/genética , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Eliminación de Gen , Genotipo , Crecimiento/genética , Ratones , Ratones Noqueados , Fenotipo
7.
Cell Death Dis ; 15(8): 558, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090086

RESUMEN

Prostate cancer (PCa) is the second leading cause of cancer-related death in American men. PCa that relapses after hormonal therapies, referred to as castration resistant PCa (CRPC), often presents with metastases (mCRPC) that are the major cause of mortality. The few available therapies for mCRPC patients include taxanes docetaxel (DTX) and cabazitaxel (CBZ). However, development of resistance limits their clinical use. Mechanistically, resistance arises through upregulation of multidrug resistance (MDR) proteins such as MDR1/ABCB1, making ABCB1 an attractive therapeutic target. Yet, ABCB1 inhibitors failed to be clinically useful due to low specificity and toxicity issues. To study taxanes resistance, we produced CBZ resistant C4-2B cells (RC4-2B) and documented resistance to both CBZ and DTX in cell culture and in 3D prostaspheres settings. RNAseq identified increased expression of ABCB1 in RC4-2B, that was confirmed by immunoblotting and immunofluorescent analysis. ABCB1-specific inhibitor elacridar reversed CBZ and DTX resistance in RC4-2B cells, confirming ABCB1-mediated resistance mechanism. In a cell-based screen using a curated library of cytotoxic drugs, we found that DNA damaging compounds Camptothecin (CPT) and Cytarabine (Ara-C) overcame resistance as seen by similar cytotoxicity in parental C4-2B and resistant RC4-2B. Further, these compounds were cytotoxic to multiple PC cells resistant to taxanes with high ABCB1 expression and, therefore, can be used to conquer the acquired resistance to taxanes in PCa. Finally, inhibition of cyclin-dependent kinases 4/6 (CDK4/6) with small molecule inhibitors (CDK4/6i) potentiated cytotoxic effect of CPT or Ara-C in both parental and resistant cells. Overall, our findings indicate that DNA damaging agents CPT and Ara-C alone or in combination with CDK4/6i can be suggested as a new treatment regimen in CRPC patients, including those that are resistant to taxanes.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Docetaxel , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Neoplasias de la Próstata Resistentes a la Castración , Taxoides , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Línea Celular Tumoral , Docetaxel/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Taxoides/farmacología , Taxoides/uso terapéutico , Antineoplásicos/farmacología
8.
Epigenomes ; 8(3)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39189258

RESUMEN

Cytosine methylation contributes to the regulation of gene expression and normal hematopoiesis in mammals. It is catalyzed by the family of DNA methyltransferases that include DNMT1, DNMT3A, and DNMT3B. Peripheral T-cell lymphomas (PTCLs) represent aggressive mature T-cell malignancies exhibiting a broad spectrum of clinical features with poor prognosis and inadequately understood molecular pathobiology. To better understand the molecular landscape and identify candidate genes involved in disease maintenance, we profiled DNA methylation and gene expression of PTCLs. We found that the methylation patterns in PTCLs are deregulated and heterogeneous but share 767 hypo- and 567 hypermethylated differentially methylated regions (DMRs) along with 231 genes up- and 91 genes downregulated in all samples, suggesting a potential association with tumor development. We further identified 39 hypomethylated promoters associated with increased gene expression in the majority of PTCLs. This putative oncogenic signature included the TRIP13 (thyroid hormone receptor interactor 13) gene whose genetic and pharmacologic inactivation inhibited the proliferation of T-cell lines by inducing G2-M arrest and apoptosis. Our data thus show that human PTCLs have a significant number of recurrent methylation alterations that may affect the expression of genes critical for proliferation whose targeting might be beneficial in anti-lymphoma treatments.

9.
Res Sq ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464090

RESUMEN

Cytosine methylation of genomic DNA contributes to the regulation of gene expression and is involved in normal development including hematopoiesis in mammals. It is catalyzed by the family of DNA methyltransferases (DNMTs) that include DNMT1, DNMT3A, and DNMT3B. Peripheral T-cell lymphomas (PTCLs) represent a diverse group of aggressive mature T-cell malignancies accounting for approximately 10-15% of non-Hodgkin lymphoma cases in the US. PTCLs exhibit a broad spectrum of clinical, histological, and immunophenotypic features with poor prognosis and inadequately understood molecular pathobiology. To better understand the molecular landscape and identify candidate genes involved in disease maintenance, we used high-resolution Whole Genome Bisulfite Sequencing (WGBS) and RNA-seq to profile DNA methylation and gene expression of PTCLs and normal T-cells. We found that the methylation patterns in PTCLs are deregulated and heterogeneous but share 767 hypo- and 567 hypermethylated differentially methylated regions (DMRs) along with 231 genes up- and 91 genes downregulated in all samples suggesting a potential association with tumor development. We further identified 39 hypomethylated promoters associated with increased gene expression in the majority of PTCLs. This putative oncogenic signature included the TRIP13 (thyroid hormone receptor interactor 13) gene whose both genetic and pharmacologic inactivation, inhibited cellular growth of PTCL cell lines by inducing G2-M arrest accompanied by apoptosis suggesting that such an approach might be beneficial in human lymphoma treatment. Altogether we show that human PTCLs are characterized by a large number of recurrent methylation alterations, and demonstrated that TRIP13 is critical for PTCL maintenance in vitro.

10.
J Biol Chem ; 286(6): 4783-95, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21115501

RESUMEN

Hematopoietic development involves the coordinated activity of differentiation and cell cycle regulators. In current models of mammalian cell cycle control, E2f activators (E2f1, E2f2, and E2f3) are portrayed as the ultimate transcriptional effectors that commit cells to enter and progress through S phase. Using conditional gene knock-out strategies, we show that E2f1-3 are not required for the proliferation of early myeloid progenitors. Rather, these E2fs are critical for cell survival and proliferation at two distinct steps of myeloid development. First, E2f1-3 are required as transcriptional repressors for the survival of CD11b(+) myeloid progenitors, and then they are required as activators for the proliferation of CD11b(+) macrophages. In bone marrow macrophages, we show that E2f1-3 respond to CSF1-Myc mitogenic signals and serve to activate E2f target genes and promote their proliferation. Together, these findings expose dual functions for E2f1-3 at distinct stages of myeloid development in vivo, first as repressors in cell survival and then as activators in cell proliferation. In summary, this work places E2f1-3 in a specific signaling cascade that is critical for myeloid development in vivo.


Asunto(s)
Diferenciación Celular/fisiología , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F2/metabolismo , Factor de Transcripción E2F3/metabolismo , Células Progenitoras Mieloides/metabolismo , Fase S/fisiología , Animales , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Supervivencia Celular/fisiología , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F2/genética , Factor de Transcripción E2F3/genética , Técnicas de Inactivación de Genes , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Células 3T3 NIH , Transducción de Señal/fisiología
11.
Clin Cancer Res ; 28(4): 756-769, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34716195

RESUMEN

PURPOSE: In acute myeloid leukemia (AML), recurrent DNA methyltransferase 3A (DNMT3A) mutations are associated with chemoresistance and poor prognosis, especially in advanced-age patients. Gene-expression studies in DNMT3A-mutated cells identified signatures implicated in deregulated DNA damage response and replication fork integrity, suggesting sensitivity to replication stress. Here, we tested whether pharmacologically induced replication fork stalling, such as with cytarabine, creates a therapeutic vulnerability in cells with DNMT3A(R882) mutations. EXPERIMENTAL DESIGN: Leukemia cell lines, genetic mouse models, and isogenic cells with and without DNMT3A(mut) were used to evaluate sensitivity to nucleoside analogues such as cytarabine in vitro and in vivo, followed by analysis of DNA damage and signaling, replication restart, and cell-cycle progression on treatment and after drug removal. Transcriptome profiling identified pathways deregulated by DNMT3A(mut) expression. RESULTS: We found increased sensitivity to pharmacologically induced replication stress in cells expressing DNMT3A(R882)-mutant, with persistent intra-S-phase checkpoint activation, impaired PARP1 recruitment, and elevated DNA damage, which was incompletely resolved after drug removal and carried through mitosis. Pulse-chase double-labeling experiments with EdU and BrdU after cytarabine washout demonstrated a higher rate of fork collapse in DNMT3A(mut)-expressing cells. RNA-seq studies supported deregulated cell-cycle progression and p53 activation, along with splicing, ribosome biogenesis, and metabolism. CONCLUSIONS: Together, our studies show that DNMT3A mutations underlie a defect in recovery from replication fork arrest with subsequent accumulation of unresolved DNA damage, which may have therapeutic tractability. These results demonstrate that, in addition to its role in epigenetic control, DNMT3A contributes to preserving genome integrity during replication stress. See related commentary by Viny, p. 573.


Asunto(s)
Daño del ADN , ADN Metiltransferasa 3A , Replicación del ADN , Leucemia Mieloide Aguda , Animales , ADN Metiltransferasa 3A/genética , Replicación del ADN/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Ratones , Mutación , Pronóstico
12.
EBioMedicine ; 63: 103191, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33418509

RESUMEN

BACKGROUND: DNA methylation regulates gene transcription in many physiological processes in mammals including development and haematopoiesis. It is catalysed by several DNA methyltransferases, including Dnmt3b that mediates both methylation-dependant and independent gene repression. Dnmt3b is critical for mouse embryogenesis and functions as a tumour suppressor in haematologic malignancies in mice. However, the extent to which Dnmt3b's catalytic activity (CA) is involved in development and cancer is unclear. METHODS: We used a mouse model expressing catalytically inactive Dnmt3b (Dnmt3bCI) to study a role of Dnmt3b's CA in development and cancer. We utilized global approaches including Whole-genome Bisulfite sequencing and RNA-seq to analyse DNA methylation and gene expression to identify putative targets of Dnmt3b's CA. To analyse postnatal development and haematopoiesis, we used tissue staining, histological and FACS analysis. To determine potential involvement of selected genes in lymphomagenesis, we used overexpression and knock down approaches followed by in vitro growth assays. FINDINGS: We show that mice expressing Dnmt3bCI only, survive postnatal development and develop ICF (the immunodeficiency-centromeric instability-facial anomalies) -like syndrome. The lack of Dnmt3b's CA promoted fibroblasts transformation in vitro, accelerated MLL-AF9 driven Acute Myeloid Leukaemia and MYC-induced T-cell lymphomagenesis in vivo. The elimination of Dnmt3b's CA resulted in decreased methylation of c-Met promoter and its upregulation, activated oncogenic Met signalling, Stat3 phosphorylation and up-regulation of Lin28b promoting lymphomagenesis. INTERPRETATION: Our data demonstrates that Dnmt3b's CA is largely dispensable for mouse development but critical to prevent tumourigenesis by controlling events involved in cellular transformation. FUNDING: This study was supported by Department of Anatomy and Cell Biology and Cancer Centre at the University of Florida start-up funds, NIH/NCI grant 1R01CA188561-01A1 (R.O.).


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Catálisis , Línea Celular , Metilación de ADN , Modelos Animales de Enfermedad , Activación Enzimática , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma/diagnóstico , Linfoma/etiología , Linfoma/metabolismo , Ratones , Ratones Noqueados , Mutación , ADN Metiltransferasa 3B
13.
PLoS Biol ; 5(7): e179, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17608565

RESUMEN

It has long been known that loss of the retinoblastoma protein (Rb) perturbs neural differentiation, but the underlying mechanism has never been solved. Rb absence impairs cell cycle exit and triggers death of some neurons, so differentiation defects may well be indirect. Indeed, we show that abnormalities in both differentiation and light-evoked electrophysiological responses in Rb-deficient retinal cells are rescued when ectopic division and apoptosis are blocked specifically by deleting E2f transcription factor (E2f) 1. However, comprehensive cell-type analysis of the rescued double-null retina exposed cell-cycle-independent differentiation defects specifically in starburst amacrine cells (SACs), cholinergic interneurons critical in direction selectivity and developmentally important rhythmic bursts. Typically, Rb is thought to block division by repressing E2fs, but to promote differentiation by potentiating tissue-specific factors. Remarkably, however, Rb promotes SAC differentiation by inhibiting E2f3 activity. Two E2f3 isoforms exist, and we find both in the developing retina, although intriguingly they show distinct subcellular distribution. E2f3b is thought to mediate Rb function in quiescent cells. However, in what is to our knowledge the first work to dissect E2f isoform function in vivo we show that Rb promotes SAC differentiation through E2f3a. These data reveal a mechanism through which Rb regulates neural differentiation directly, and, unexpectedly, it involves inhibition of E2f3a, not potentiation of tissue-specific factors.


Asunto(s)
Células Amacrinas/citología , Células Amacrinas/metabolismo , Factor de Transcripción E2F3/metabolismo , Proteína de Retinoblastoma/metabolismo , Animales , Apoptosis , Secuencia de Bases , Ciclo Celular , Diferenciación Celular/fisiología , Cartilla de ADN/genética , Factor de Transcripción E2F1/deficiencia , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F2/deficiencia , Factor de Transcripción E2F2/genética , Factor de Transcripción E2F2/metabolismo , Factor de Transcripción E2F3/deficiencia , Factor de Transcripción E2F3/genética , Femenino , Genes de Retinoblastoma , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Proteína de Retinoblastoma/deficiencia , Proteína de Retinoblastoma/genética
14.
Mol Cell Biol ; 27(1): 65-78, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17167174

RESUMEN

E2F-mediated control of gene expression is believed to have an essential role in the control of cellular proliferation. Using a conditional gene-targeting approach, we show that the targeted disruption of the entire E2F activator subclass composed of E2f1, E2f2, and E2f3 in mouse embryonic fibroblasts leads to the activation of p53 and the induction of p53 target genes, including p21(CIP1). Consequently, cyclin-dependent kinase activity and retinoblastoma (Rb) phosphorylation are dramatically inhibited, leading to Rb/E2F-mediated repression of E2F target gene expression and a severe block in cellular proliferation. Inactivation of p53 in E2f1-, E2f2-, and E2f3-deficient cells, either by spontaneous mutation or by conditional gene ablation, prevented the induction of p21(CIP1) and many other p53 target genes. As a result, cyclin-dependent kinase activity, Rb phosphorylation, and E2F target gene expression were restored to nearly normal levels, rendering cells responsive to normal growth signals. These findings suggest that a critical function of the E2F1, E2F2, and E2F3 activators is in the control of a p53-dependent axis that indirectly regulates E2F-mediated transcriptional repression and cellular proliferation.


Asunto(s)
Factor de Transcripción E2F1/fisiología , Factor de Transcripción E2F2/fisiología , Factor de Transcripción E2F3/fisiología , Regulación de la Expresión Génica , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proliferación Celular , Fibroblastos/metabolismo , Marcación de Gen , Ratones , Ratones Noqueados , Mutación , Fosforilación , Proteína de Retinoblastoma/metabolismo , Transcripción Genética
15.
PLoS Genet ; 3(9): 1757-69, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17907813

RESUMEN

Hypermethylation of CpG islands is a common epigenetic alteration associated with cancer. Global patterns of hypermethylation are tumor-type specific and nonrandom. The biological significance and the underlying mechanisms of tumor-specific aberrant promoter methylation remain unclear, but some evidence suggests that this specificity involves differential sequence susceptibilities, the targeting of DNA methylation activity to specific promoter sequences, or the selection of rare DNA methylation events during disease progression. Using restriction landmark genomic scanning on samples derived from tissue culture and in vivo models of T cell lymphomas, we found that MYC overexpression gave rise to a specific signature of CpG island hypermethylation. This signature reflected gene transcription profiles and was detected only in advanced stages of disease. The further inactivation of the Pten, p53, and E2f2 tumor suppressors in MYC-induced lymphomas resulted in distinct and diagnostic CpG island methylation signatures. Our data suggest that tumor-specific DNA methylation in lymphomas arises as a result of the selection of rare DNA methylation events during the course of tumor development. This selection appears to be driven by the genetic configuration of tumor cells, providing experimental evidence for a causal role of DNA hypermethylation in tumor progression and an explanation for the tremendous epigenetic heterogeneity observed in the evolution of human cancers. The ability to predict genome-wide epigenetic silencing based on relatively few genetic alterations will allow for a more complete classification of tumors and understanding of tumor cell biology.


Asunto(s)
Islas de CpG/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Linfoma de Células T/genética , Animales , Células Cultivadas , ADN de Neoplasias/genética , ADN de Neoplasias/aislamiento & purificación , ADN de Neoplasias/metabolismo , Modelos Animales de Enfermedad , Embrión de Mamíferos , Epigénesis Genética , Fibroblastos/metabolismo , Silenciador del Gen , Genes Supresores de Tumor , Humanos , Linfoma de Células T/metabolismo , Ratones , Ratones Desnudos , Ratones Transgénicos , Trasplante de Neoplasias , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Transgenes
16.
Nat Commun ; 10(1): 4374, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31558711

RESUMEN

DNA methylation regulates gene expression in a variety of processes, including mouse embryonic development. Four catalytically active enzymes function in mice as DNA methyltransferases (Dnmts) and as transcriptional regulators. Inactivation of Dnmt3b results in mouse embryonic lethality, but which activities are involved is unclear. Here we show that catalytically inactive Dnmt3b restores a majority of methylation and expression changes deregulated in the absence of Dnmt3b, and as a result, mice survive embryonic development. Thus, Dnmt3b functions as an accessory cofactor supporting catalytic activities performed by other Dnmts. We further demonstrate that Dnmt3b is linked to a control of major developmental pathways, including Wnt and hedgehog signaling. Dnmt3b directly represses Wnt9b whose aberrant up-regulation contributes to embryonic lethality of Dnmt3b knockout embryos. Our results highlight that Dnmt3b is a multifaceted protein that serves as an enzyme, an accessory factor for other methyltransferases, and as a transcriptional repressor in mouse embryogenesis.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Animales , Biocatálisis , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Femenino , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal/genética , Proteínas Wnt/genética , ADN Metiltransferasa 3B
17.
J Virol ; 81(23): 13191-9, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17855529

RESUMEN

The simian virus 40 large T antigen contributes to neoplastic transformation, in part, by targeting the Rb family of tumor suppressors. There are three known Rb proteins, pRb, p130, and p107, all of which block the cell cycle by preventing the transcription of genes regulated by the E2F family of transcription factors. T antigen interacts directly with Rb proteins and disrupts Rb-E2F complexes both in vitro and in cultured cells. Consequently, T antigen is thought to inhibit transcriptional repression by the Rb family proteins by disrupting their interaction with E2F proteins, thus allowing E2F-dependent transcription and the expression of cellular genes needed for entry into S phase. This model predicts that active E2F-dependent transcription is required for T-antigen-induced transformation. To test this hypothesis, we have examined the status of Rb-E2F complexes in murine enterocytes. Previous studies have shown that T antigen drives enterocytes into S phase, resulting in intestinal hyperplasia, and that the induction of enterocyte proliferation requires T-antigen binding to Rb proteins. In this paper, we show that normal growth-arrested enterocytes contain p130-E2F4 complexes and that T-antigen expression destroys these complexes, most likely by stimulating p130 degradation. Furthermore, unlike their normal counterparts, enterocytes expressing T antigen contain abundant levels of E2F2 and E2F3a. Concomitantly, T-antigen-induced intestinal proliferation is reduced in mice lacking either E2F2 alone or both E2F2 and E2F3a, but not in mice lacking E2F1. These studies support a model in which T antigen eliminates Rb-E2F repressive complexes so that specific activator E2Fs can drive S-phase entry.


Asunto(s)
Antígenos Transformadores de Poliomavirus/fisiología , Factor de Transcripción E2F2/metabolismo , Enfermedades Gastrointestinales/virología , Hiperplasia/virología , Virus 40 de los Simios/patogenicidad , Animales , Factor de Transcripción E2F2/deficiencia , Factor de Transcripción E2F4/metabolismo , Enterocitos/química , Enterocitos/virología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteína p130 Similar a la del Retinoblastoma/metabolismo
18.
Front Oncol ; 6: 182, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27563627

RESUMEN

Over the last 30 years, studies of aberrant DNA methylation in hematologic malignancies have been dominated by the primary focus of understanding promoter hypermethylation. These efforts not only resulted in a better understanding of the basis of epigenetic silencing of tumor suppressor genes but also resulted in approval of hypomethylating agents for the treatment of several malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. Recent advances in global methylation profiling coupled with the use of mouse models suggest that aberrant promoter hypomethylation is also a frequent event in hematologic malignancies, particularly in chronic lymphocytic leukemia (CLL). Promoter hypomethylation affects gene expression and, therefore, may play an important role in disease pathogenesis. Here, we review recent findings and discuss the potential involvement of aberrant promoter hypomethylation in CLL.

19.
Exp Hematol ; 44(1): 30-7.e1, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26435347

RESUMEN

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the United States. The tissue microenvironment, specifically the lymph nodes, influences the biological and clinical behavior of CLL cells. Gene expression profiling of CLL cells from peripheral blood, bone marrow, and lymph nodes revealed Cav-1 as one of the genes that might be involved in the pathogenesis of CLL. We have previously reported that the knockdown of Cav-1 in primary CLL cells exhibits a significant decrease in cell migration and immune synapse formation. However, the precise role of Cav-1 in CLL initiation and progression in vivo is not known. Therefore, we decreased the expression of Cav-1 in vivo by breeding Eµ-TCL1 with cav-1 knockout mice. We observed a significant decrease in the number of CLL cells and rate of proliferation of CLL cells in spleen, liver, and bone marrow from Eµ-TCL1-Cav1(-/+) and Eµ-TCL1-Cav1(-/-) mice as compared with Eµ-TCL1 mice. In addition, there was a significant increase in survival of Eµ-TCL1-Cav1(-/+) and Eµ-TCL1-Cav1(-/-) compared with Eµ-TCL1 mice. Mechanistically, we observed a decrease in MAPK-Erk signaling measured by p-Erk levels in Eµ-TCL1-Cav1(-/+) mice when compared with Eµ-TCL1-Cav(wt/wt). Together these results indicate that decreased Cav-1 in Eµ-TCL1 mice significantly delays the onset of CLL and decreases leukemic progression by inhibiting MAPK-Erk signaling, suggesting a role for Cav-1 in the proliferation and progression of CLL.


Asunto(s)
Caveolina 1/genética , Leucemia Linfocítica Crónica de Células B/patología , Proteínas Proto-Oncogénicas/genética , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Ratones
20.
Sci Rep ; 6: 34222, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27677595

RESUMEN

Cytosine methylation of DNA is an epigenetic modification involved in the repression of genes that affect biological processes including hematopoiesis. It is catalyzed by DNA methyltransferases, one of which -DNMT3A- is frequently mutated in human hematologic malignancies. We have previously reported that Dnmt3a inactivation in hematopoietic stem cells results in chronic lymphocytic leukemia (CLL) and CD8-positive peripheral T cell lymphomas (PTCL) in EµSRα-tTA;Teto-Cre;Dnmt3afl/fl; Rosa26LOXPEGFP/EGFP (Dnmt3aΔ/Δ) mice. The extent to which molecular changes overlap between these diseases is not clear. Using high resolution global methylation and expression analysis we show that whereas patterns of methylation and transcription in normal B-1a cells and CD8-positive T cells are similar, methylomes and transcriptomes in malignant B-1a and CD8+ T cells are remarkably distinct, suggesting a cell-type specific function for Dnmt3a in cellular transformation. Promoter hypomethylation in tumors was 10 times more frequent than hypermethylation, three times more frequent in CLL than PTCL and correlated better with gene expression than hypermethylation. Cross-species molecular comparison of mouse and human CLL and PTCL reveals significant overlaps and identifies putative oncogenic drivers of disease. Thus, Dnmt3aΔ/Δ mice can serve as a new mouse model to study CLL and PTCL in relevant physiological settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA