Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 24(11)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36359621

RESUMEN

Coherent states, known as displaced vacuum states, play an important role in quantum information processing, quantum machine learning, and quantum optics. In this article, two ways to digitally prepare coherent states in quantum circuits are introduced. First, we construct the displacement operator by decomposing it into Pauli matrices via ladder operators, i.e., creation and annihilation operators. The high fidelity of the digitally generated coherent states is verified compared with the Poissonian distribution in Fock space. Secondly, by using Variational Quantum Algorithms, we choose different ansatzes to generate coherent states. The quantum resources-such as numbers of quantum gates, layers and iterations-are analyzed for quantum circuit learning. The simulation results show that quantum circuit learning can provide high fidelity on learning coherent states by choosing appropriate ansatzes.

2.
Sci Rep ; 13(1): 11777, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479874

RESUMEN

Efficient packing of items into bins is a common daily task. Known as Bin Packing Problem, it has been intensively studied in the field of artificial intelligence, thanks to the wide interest from industry and logistics. Since decades, many variants have been proposed, with the three-dimensional Bin Packing Problem as the closest one to real-world use cases. We introduce a hybrid quantum-classical framework for solving real-world three-dimensional Bin Packing Problems (Q4RealBPP), considering different realistic characteristics, such as1) package and bin dimensions, (2) overweight restrictions, (3) affinities among item categories and (4) preferences for item ordering. Q4RealBPP permits the solving of real-world oriented instances of 3 dBPP, contemplating restrictions well appreciated by industrial and logistics sectors.

3.
Neural Netw ; 128: 61-72, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32442627

RESUMEN

Due to their unprecedented capacity to learn patterns from raw data, deep neural networks have become the de facto modeling choice to address complex machine learning tasks. However, recent works have emphasized the vulnerability of deep neural networks when being fed with intelligently manipulated adversarial data instances tailored to confuse the model. In order to overcome this issue, a major effort has been made to find methods capable of making deep learning models robust against adversarial inputs. This work presents a new perspective for improving the robustness of deep neural networks in image classification. In computer vision scenarios, adversarial images are crafted by manipulating legitimate inputs so that the target classifier is eventually fooled, but the manipulation is not visually distinguishable by an external observer. The reason for the imperceptibility of the attack is that the human visual system fails to detect minor variations in color space, but excels at detecting anomalies in geometric shapes. We capitalize on this fact by extracting color gradient features from input images at multiple sensitivity levels to detect possible manipulations. We resort to a deep neural classifier to predict the category of unseen images, whereas a discrimination model analyzes the extracted color gradient features with time series techniques to determine the legitimacy of input images. The performance of our method is assessed over experiments comprising state-of-the-art techniques for crafting adversarial attacks. Results corroborate the increased robustness of the classifier when using our discrimination module, yielding drastically reduced success rates of adversarial attacks that operate on the whole image rather than on localized regions or around the existing shapes of the image. Future research is outlined towards improving the detection accuracy of the proposed method for more general attack strategies.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Color
4.
Neural Netw ; 123: 118-133, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31841878

RESUMEN

Stream data processing has lately gained momentum with the arrival of new Big Data scenarios and applications dealing with continuously produced information flows. Unfortunately, traditional machine learning algorithms are not prepared to tackle the specific challenges imposed by data stream processing, such as the need for learning incrementally, limited memory and processing time requirements, and adaptation to non-stationary data, among others. To face these paradigms, Spiking Neural Networks have emerged as one of the most promising stream learning techniques, with variants such as Evolving Spiking Neural Networks capable of efficiently addressing many of these challenges. Interestingly, these networks resort to a particular population encoding scheme - Gaussian Receptive Fields - to transform the incoming stimuli into temporal spikes. The study presented in this manuscript sheds light on the predictive potential of this encoding scheme, focusing on how it can be applied as a computationally lightweight, model-agnostic preprocessing step for data stream learning. We provide informed intuition to unveil under which circumstances the aforementioned population encoding method yields effective prediction gains in data stream classification with respect to the case where no preprocessing is performed. Results obtained for a variety of stream learning models and both synthetic and real stream datasets are discussed to empirically buttress the capability of Gaussian Receptive Fields to boost the predictive performance of stream learning methods, spanning further research towards extrapolating our findings to other machine learning problems.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Humanos , Memoria/fisiología , Modelos Neurológicos , Neuronas/fisiología , Distribución Normal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA