Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Pediatr Emerg Care ; 38(1): e295-e299, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33105465

RESUMEN

METHODS: An electronic, anonymous, multicenter survey housed by Monkey Survey was sent to physicians in LA and included questions about hospital and pediatric critical transport, resources available and level of car. Nineteen Latin-American countries were asked to complete the survey. RESULTS: A total of 212 surveys were analyzed, achieving a representativity of 19 LA countries, being most participants (59.4%, n = 126) from South America (Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay and Venezuela). Most surveys were conducted by physicians of tertiary level centers (60.8%, n = 129), most of the institutions were classified by the participants as public health care centers (81.6%, n = 173). Most of the surveyed physicians (63.7%, n = 135) reported that there is a coordination center for critical care transport (CCT). In most cases, physicians report that a unified transport system for pediatric critical patients does not exist in their countries (67.45%, n = 143). Only 59 (30.7%) surveys reported the use of an exclusively pediatric critical care transport system. Most of these transport systems are described as a mixture of public and private efforts (51.56%, n = 99), but there is also a considerable involvement of government-funded critical transport systems (43.75%, n = 84). Specific training for personnel devoted to transportation of critically ill patients is reported in 55.6% (90), and the medical equipment necessary to carry out the transport is available in 67.7%. The majority (83.95%, n = 136) mentioned that access to advanced life support courses is possible. Training in triage and disaster is available in 44.1%. Physicians and registered nurse were identified as the transport providers in 41.5%, and only one third were made by pediatricians-pediatric nurse. The main reasons for transfers were respiratory illness, neonatal pathologies, trauma, infectious diseases, and neurological conditions. Overall, pediatric transport was reported as insufficient (70.19%, n = 148) by the surveyed physicians in LA and nonexisting by some of them (6.83%, n = 15). There were no regulations or laws in the majority of the surveyed countries (63.13%), and in the places where physicians reported regulatory laws, there were no dissemination (84.9%) by the local authorities. CONCLUSIONS: In LA, there is a great variability in personnel training, equipment for pediatric-neonatal transport, transport team composition, and characterization of critical care transport systems. Continued efforts to improve conditions in our countries by generating documents that standardize practices and generating scientific information on the epidemiology of pediatric transfers, especially of critically ill patients, may help reduce patient morbidity and mortality.


Asunto(s)
Cuidados Críticos , Grupos Raciales , Argentina , Niño , Humanos , América Latina , Encuestas y Cuestionarios
3.
Am J Physiol Endocrinol Metab ; 311(4): E791-E801, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27624100

RESUMEN

Sepsis disrupts skeletal muscle proteostasis and mitigates the anabolic response to leucine (Leu) in muscle of mature animals. We have shown that Leu stimulates muscle protein synthesis (PS) in healthy neonatal piglets. To determine if supplemental Leu can stimulate PS and reduce protein degradation (PD) signaling in neonatal muscle during endotoxemia, overnight-fasted neonatal pigs were infused for 8 h with LPS or saline while plasma amino acids, glucose, and insulin were maintained at fasting levels during pancreatic-substrate clamps. Leu or saline was infused during the last hour. Markers of PS and PD were determined in skeletal muscle. Compared with controls, Leu increased PS in longissimus dorsi (LD), gastrocnemius, and soleus muscles. LPS decreased PS in these three muscles by 36%, 28%, and 38%, but Leu antagonized that reduction by increasing PS by 84%, 81%, and 83%, respectively, when supplemented to LPS. Leu increased eukaryotic translation initiation factor (eIF)3b-raptor interactions, eIF4E-binding protein-1, and S6 kinase 1 phosphorylation as well as eIF4E·eIF4G complex formation in LD, gastrocnemius, and soleus muscles of control and LPS-treated pigs. In LD muscle, LPS increased the light chain (LC)3-II-to-LC3 ratio and muscle-specific RING finger (MuRF-1) abundance but not atrogin-1 abundance or AMP-activated protein kinase-α phosphorylation. Leu supplementation to LPS-treated pigs reduced the LC3-II-to-LC3 ratio, MuRF-1 abundance, and AMP-activated protein kinase-α phosphorylation compared with LPS alone. In conclusion, parenteral Leu supplementation attenuates the LPS-induced reduction in PS by stimulating mammalian target of rapamycin complex 1-dependent translation and may reduce PD by attenuating autophagy-lysosome and MuRF-1 signaling in neonatal skeletal muscle.


Asunto(s)
Endotoxemia/metabolismo , Leucina/farmacología , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Animales , Animales Recién Nacidos , Autofagia/efectos de los fármacos , Femenino , Lipopolisacáridos/farmacología , Masculino , Músculo Esquelético/efectos de los fármacos , Miocardio/metabolismo , Transducción de Señal/efectos de los fármacos , Sus scrofa , Porcinos
4.
Am J Physiol Endocrinol Metab ; 310(8): E699-E713, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-26884386

RESUMEN

Neonatal pigs are used as a model to study and optimize the clinical treatment of infants who are unable to maintain oral feeding. Using this model, we have shown previously that pulsatile administration of leucine during continuous feeding over 24 h via orogastric tube enhanced protein synthesis in skeletal muscle compared with continuous feeding alone. To determine the long-term effects of leucine pulses, neonatal piglets (n = 11-12/group) were continuously fed formula via orogastric tube for 21 days, with an additional parenteral infusion of either leucine (CON + LEU; 800 µmol·kg-1·h-1) or alanine (CON + ALA) for 1 h every 4 h. The results show that body and muscle weights and lean gain were ∼25% greater, and fat gain was 48% lower in CON + LEU than CON + ALA; weights of other tissues were unaffected by treatment. Fractional protein synthesis rates in longissimus dorsi, gastrocnemius, and soleus muscles were ∼30% higher in CON + LEU compared with CON + ALA and were associated with decreased Deptor abundance and increased mTORC1, mTORC2, 4E-BP1, and S6K1 phosphorylation, SNAT2 abundance, and association of eIF4E with eIF4G and RagC with mTOR. There were no treatment effects on PKB, eIF2α, eEF2, or PRAS40 phosphorylation, Rheb, SLC38A9, v-ATPase, LAMTOR1, LAMTOR2, RagA, RagC, and LAT1 abundance, the proportion of polysomes to nonpolysomes, or the proportion of mRNAs encoding rpS4 or rpS8 associated with polysomes. Our results demonstrate that pulsatile delivery of a leucine supplement during 21 days of continuous enteral feeding enhances lean growth by stimulating the mTORC1-dependent translation initiation pathway, leading to protein synthesis in skeletal muscle of neonates.


Asunto(s)
Leucina/farmacología , Proteínas Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Alanina/farmacología , Sistema de Transporte de Aminoácidos A/efectos de los fármacos , Sistema de Transporte de Aminoácidos A/metabolismo , Animales , Animales Recién Nacidos , Músculos de la Espalda , Suplementos Dietéticos , Nutrición Enteral , Infusiones Parenterales , Leucina/administración & dosificación , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/efectos de los fármacos , Complejos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilación/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas Ribosómicas/efectos de los fármacos , Proteínas Ribosómicas/genética , Sus scrofa , Porcinos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
5.
Pediatr Res ; 80(3): 448-51, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27064245

RESUMEN

BACKGROUND: Sepsis induces loss of skeletal muscle mass by activating the ubiquitin proteasome (UPS) and autophagy systems. Although muscle protein synthesis in healthy neonatal piglets is responsive to amino acids (AA) stimulation, it is not known if AA can prevent the activation of muscle protein degradation induced by sepsis. We hypothesize that AA attenuate the sepsis-induced activation of UPS and autophagy in neonates. METHODS: Newborn pigs were infused for 8 h with liposaccharide (LPS) (0 and 10 µg·kg(-1)·h(-1)), while circulating glucose and insulin were maintained at fasting levels; circulating AA were clamped at fasting or fed levels. Markers of protein degradation and AA transporters in longissimus dorsi (LD) were examined. RESULTS: Fasting AA increased muscle microtubule-associated protein light 1 chain 3 II (LC3-II) abundance in LPS compared to control, while fed AA levels decreased LC3-II abundance in both LPS and controls. There was no effect of AA supplementation on activated protein kinase (AMP), forkhead box O1 and O4 phosphorylation, nor on sodium-coupled neutral AA transporter 2 and light chain AA transporter 1, muscle RING-finger protein-1 and muscle Atrophy F-Box/Atrogin-1 abundance. CONCLUSION: These findings suggest that supplementation of AA antagonize autophagy signal activation in skeletal muscle of neonates during endotoxemia.


Asunto(s)
Aminoácidos/sangre , Autofagia/efectos de los fármacos , Endotoxemia/fisiopatología , Insulina/sangre , Músculo Esquelético/patología , Aminoácidos de Cadena Ramificada/sangre , Animales , Animales Recién Nacidos , Glucemia/análisis , Nitrógeno de la Urea Sanguínea , Endotoxemia/sangre , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Sepsis/fisiopatología , Sus scrofa , Porcinos , Temperatura
6.
Pediatr Res ; 80(5): 744-752, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27508897

RESUMEN

BACKGROUND: Acute infection promotes skeletal muscle wasting and insulin resistance, but the effect of insulin on energy and substrate sensing in skeletal muscle of chronically infected neonates has not been studied. METHODS: Eighteen 2-d-old pigs underwent cecal ligation and puncture (CLP) or sham surgery (CON) to induce a chronic infection for 5 d. On d 5, pancreatic-substrate clamps were performed to attain fasting or fed insulin levels but to maintain glucose and amino acids in the fasting range. Total fractional protein synthesis rates (Ks), translational control mechanisms, and energy sensing and degradation signal activation were measured in longissimus dorsi muscle. RESULTS: In fasting conditions, CLP reduced Ks and sirtuin 1 (SIRT1) and increased AMP-activated protein kinase α (AMPKα) activation and muscle RING-finger protein-1 (MuRF1). Insulin treatment increased Ks and mitochondrial protein synthesis, enhanced translation activation, and reduced SIRT1 in CON. In contrast, in CLP, insulin treatment increased Ks, protein kinase B (PKB) and Forkhead box O1 phosphorylation, antagonized AMPK activation, and decreased peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), MuRF1, and SIRT1. CONCLUSION: Energy and substrate sensing in skeletal muscle by the PKB-AMPK-SIRT1-PGC-1α axis is impacted by chronic infection in neonatal pigs and can be modulated by insulin.


Asunto(s)
Insulina/metabolismo , Músculo Esquelético/metabolismo , Peritonitis/fisiopatología , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Animales Recién Nacidos , Glucosa/metabolismo , Técnica de Clampeo de la Glucosa , Resistencia a la Insulina , Leucina/metabolismo , Peritonitis/metabolismo , Fosforilación , Transducción de Señal , Sirtuina 1/metabolismo , Sus scrofa , Porcinos , Factores de Transcripción/metabolismo
7.
BMC Cancer ; 15: 290, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25886038

RESUMEN

BACKGROUND: An increase in circulating platelets, or thrombocytosis, is recognized as an independent risk factor of bad prognosis and metastasis in patients with ovarian cancer; however the complex role of platelets in tumor progression has not been fully elucidated. Platelet activation has been associated with an epithelial to mesenchymal transition (EMT), while Tissue Factor (TF) protein expression by cancer cells has been shown to correlate with hypercoagulable state and metastasis. The aim of this work was to determine the effect of platelet-cancer cell interaction on TF and "Metastasis Initiating Cell (MIC)" marker levels and migration in ovarian cancer cell lines and cancer cells isolated from the ascetic fluid of ovarian cancer patients. METHODS: With informed patient consent, ascitic fluid isolated ovarian cancer cells, cell lines and ovarian cancer spheres were co-cultivated with human platelets. TF, EMT and stem cell marker levels were determined by Western blotting, flow cytometry and RT-PCR. Cancer cell migration was determined by Boyden chambers and the scratch assay. RESULTS: The co-culture of patient-derived ovarian cancer cells with platelets causes: 1) a phenotypic change in cancer cells, 2) chemoattraction and cancer cell migration, 3) induced MIC markers (EMT/stemness), 3) increased sphere formation and 4) increased TF protein levels and activity. CONCLUSIONS: We present the first evidence that platelets act as chemoattractants to cancer cells. Furthermore, platelets promote the formation of ovarian cancer spheres that express MIC markers and the metastatic protein TF. Our results suggest that platelet-cancer cell interaction plays a role in the formation of metastatic foci.


Asunto(s)
Plaquetas/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Tromboplastina/metabolismo , Biomarcadores , Comunicación Celular , Movimiento Celular , Factores Quimiotácticos/metabolismo , Femenino , Humanos , Estadificación de Neoplasias , Neoplasias Ováricas/sangre , Neoplasias Ováricas/cirugía , Fenotipo , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Tromboplastina/genética , Células Tumorales Cultivadas
8.
Am J Physiol Endocrinol Metab ; 306(1): E91-9, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24192287

RESUMEN

Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite ß-hydroxy-ß-methylbutyrate (HMB). To determine the effects of HMB on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were infused with HMB at 0, 20, 100, or 400 µmol·kg body wt(-1)·h(-1) for 1 h (HMB 0, HMB 20, HMB 100, or HMB 400). Plasma HMB concentrations increased with infusion and were 10, 98, 316, and 1,400 nmol/ml in the HMB 0, HMB 20, HMB 100, and HMB 400 pigs. Protein synthesis rates in the longissimus dorsi (LD), gastrocnemius, soleus, and diaphragm muscles, lung, and spleen were greater in HMB 20 than in HMB 0, and in the LD were greater in HMB 100 than in HMB 0. HMB 400 had no effect on protein synthesis. Eukaryotic initiation factor (eIF)4E·eIF4G complex formation and ribosomal protein S6 kinase-1 and 4E-binding protein-1 phosphorylation increased in LD, gastrocnemius, and soleus muscles with HMB 20 and HMB 100 and in diaphragm with HMB 20. Phosphorylation of eIF2α and elongation factor 2 and expression of system A transporter (SNAT2), system L transporter (LAT1), muscle RING finger 1 protein (MuRF1), muscle atrophy F-box (atrogin-1), and microtubule-associated protein light chain 3 (LC3-II) were unchanged. Results suggest that supplemental HMB enhances protein synthesis in skeletal muscle of neonates by stimulating translation initiation.


Asunto(s)
Animales Recién Nacidos/metabolismo , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Sus scrofa/metabolismo , Valeratos/administración & dosificación , Animales , Autofagia/efectos de los fármacos , Leucina/metabolismo , Músculo Esquelético/química , Factores de Iniciación de Péptidos/análisis , Factores de Iniciación de Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Valeratos/sangre
10.
Children (Basel) ; 11(6)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38929290

RESUMEN

The literature on the nutritional needs and outcomes of critically ill children is scarce, especially on those with critical neurological illnesses (CNIs). Current evidence shows a lower mortality in patients who achieve two-thirds of their nutritional needs during the first week of pediatric intensive care unit (PICU) admission. We hypothesized that achieving 60% of the recommended dietary intake during the first week of a PICU stay is not feasible in patients with CNI. We designed an observational retrospective cohort study where we included all index admissions to the PICU in our institution of children (1 month to 18 years) with CNI from January 2018 to June 2021. We collected patient demographics, anthropometric measures, and caloric and protein intake (enteral and parenteral) information during the first week of PICU admission. Goal adequacy for calories and protein was defined as [(intake/recommended) × 100] ≥ 60%. A total of 1112 patients were included in the nutrition assessment, 12% of whom were underweight (weight for age z score < -2). Of this group, 180 met the criteria for nutrition support evaluation. On the third day of admission, 50% of the patients < 2 years achieved caloric and protein goal adequacy, compared to 25% of patients > 2 years, with p-values of 0.0003 and 0.0004, respectively. Among the underweight patients, 60% achieved both caloric and protein goal adequacy by day 3 vs. 30% of non-underweight patients with p-values of 0.0006 and 0.002, respectively. The results show that achieving 60% of the recommended dietary intake by days 5 and 7 of admission was feasible in more than half of the patients in this cohort. Additionally, children who were evaluated by a clinical dietician during the first 48 h of PICU admission reached higher nutrition adequacy.

11.
Am J Physiol Endocrinol Metab ; 305(5): E620-31, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23839523

RESUMEN

Infants unable to maintain oral feeding can be nourished by orogastric tube. We have shown that orogastric continuous feeding restricts muscle protein synthesis compared with intermittent bolus feeding in neonatal pigs. To determine whether leucine infusion can be used to enhance protein synthesis during continuous feeding, neonatal piglets received the same amount of formula enterally by orogastric tube for 25.25 h continuously (CON) with or without LEU or intermittently by bolus every 4 h (BOL). For the CON+LEU group, leucine pulses were administered parenterally (800 µmol·kg(-1)·h(-1)) every 4 h. Insulin and glucose concentrations increased after the BOL meal and were unchanged in groups fed continuously. LEU infusion during CON feeding increased plasma leucine after the leucine pulse and decreased essential amino acids compared with CON feeding. Protein synthesis in longissimus dorsi (LD), gastrocnemius, and soleus muscles, but not liver or heart, were greater in CON+LEU and BOL than in the CON group. BOL feeding increased protein synthesis in the small intestine. Muscle S6K1 and 4E-BP1 phosphorylation and active eIF4E·eIF4G complex formation were higher in CON+LEU and BOL than in CON but AMPKα, eIF2α, and eEF2 phosphorylation were unchanged. LC3-II-to-total LC3 ratio was lower in CON+LEU and BOL than in CON, but there were no differences in atrogin-1 and MuRF-1 abundance and FoxO3 phosphorylation. In conclusion, administration of leucine pulses during continuous orogastric feeding in neonates increases muscle protein synthesis by stimulating translation initiation and may reduce protein degradation via the autophagy-lysosome, but not the ubiquitin-proteasome pathway.


Asunto(s)
Leucina/administración & dosificación , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Porcinos/metabolismo , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Nutrición Enteral , Femenino , Glucagón/sangre , Insulina/sangre , Leucina/sangre , Leucina/metabolismo , Embarazo , Distribución Aleatoria , Porcinos/sangre
12.
Pediatr Res ; 74(2): 154-62, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23736770

RESUMEN

BACKGROUND: Continuous and intermittent bolus orogastric feedings are strategies used in infants unable to tolerate normal feeds. METHODS: To determine the effects of feeding modality on protein synthesis in different tissues, neonatal pigs received a balanced formula by orogastric tube as an intermittent bolus feed every 4 h or as a continuous infusion, or were fasted overnight. RESULTS: As compared with fasting, protein synthesis in gastrocnemius, masseter, and soleus muscles; left ventricle; liver; pancreas; jejunum; and kidney increased in bolus- and continuously fed pigs, but the greatest increase occurred after a bolus meal. Tuberous sclerosis complex (TSC2), the proline-rich AKT substrate of 40 kDa (PRAS40), eukaryotic initiation factor (eIF) 4E binding protein (4EBP1), and ribosomal protein S6 kinase 1 (S6K1) phosphorylation in all tissues, and the proportion of ribosomal protein S4 in liver polysomes were enhanced 90 min following the bolus meal but not immediately before the meal or during continuous feeding. Eukaryotic elongation factor 2 (eEF2) and eIF2α phosphorylation were unaffected by feeding. CONCLUSION: These results suggest that intermittent bolus feeding increases protein synthesis in muscles of different fiber types and visceral tissues to a greater extent than continuous feeding by stimulating translation initiation.


Asunto(s)
Métodos de Alimentación , Músculo Esquelético/fisiología , Biosíntesis de Proteínas/fisiología , Vísceras/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Immunoblotting , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos , Factores de Tiempo
14.
Biomedicines ; 11(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37189786

RESUMEN

Estetrol (E4), a natural estrogen produced by the human fetal liver, is actively studied for menopause and breast cancer treatment. It has low side effects and preferential estrogen receptor alpha (ERα) affinity. There are no data about its effects on endometriosis, a common gynecological disease affecting 6-10% of cycling women, generating painful pelvic lesions and infertility. Current combined hormone treatment (progestins and estrogens) is safe and efficient; nevertheless, one-third of patients develop progesterone (P4) resistance and recurrence by reducing P4 receptors (PRs) levels. We aimed to compare E4 and 17ß-estradiol (E2) effects using two human endometriotic cell lines (epithelial 11Z and stromal Hs832 cells) and primary cultures from endometriotic patients. We evaluated cell growth (MTS), migration (wound assay), hormone receptors levels (Western blot), and P4 response by PCR array. Compared to E2, E4 did not affect cell growth or migration but increased estrogen receptor alpha (ERα) and PRs, and reduced ERß. Finally, the incubation with E4 improved the P4 gene response. In conclusion, E4 increased PRs levels and genetic response without inducing cell growth or migration. These results suggest that E4 might be useful for endometriosis treatment avoiding P4 resistance; however, evaluating its response in more complex models is required.

15.
Ann Biomed Eng ; 51(10): 2143-2171, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37468688

RESUMEN

Acquired disorders and congenital defects of the male and female reproductive systems can have profound impacts on patients, causing sexual and endocrine dysfunction and infertility, as well as psychosocial consequences that affect their self-esteem, identity, sexuality, and relationships. Reproductive tissue engineering (REPROTEN) is a promising approach to restore fertility and improve the quality of life of patients with reproductive disorders by developing, replacing, or regenerating cells, tissues, and organs from the reproductive and urinary systems. In this review, we explore the latest advancements in REPROTEN techniques and their applications for addressing degenerative conditions in male and female reproductive organs. We discuss current research and clinical outcomes and highlight the potential of 3D constructs utilizing biomaterials such as scaffolds, cells, and biologically active molecules. Our review offers a comprehensive guide for researchers and clinicians, providing insights into how to reestablish reproductive tissue structure and function using innovative surgical approaches and biomaterials. We highlight the benefits of REPROTEN for patients, including preservation of fertility and hormonal production, reconstruction of uterine and cervical structures, and restoration of sexual and urinary functions. Despite significant progress, REPROTEN still faces ethical and technical challenges that need to be addressed. Our review underscores the importance of continued research in this field to advance the development of effective and safe REPROTEN approaches for patients with reproductive disorders.


Asunto(s)
Medicina Reproductiva , Ingeniería de Tejidos , Humanos , Masculino , Femenino , Ingeniería de Tejidos/métodos , Calidad de Vida , Materiales Biocompatibles , Fertilidad
16.
Crit Care Explor ; 5(6): e0916, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37255626

RESUMEN

Sepsis-induced coagulopathy leading to disseminated microvascular thrombosis is associated with high mortality and has no existing therapy. Despite the high prevalence of Gram-positive bacterial sepsis, especially methicillin-resistant Staphylococcus aureus (MRSA), there is a paucity of published Gram-positive pediatric sepsis models. Large animal models replicating sepsis-induced coagulopathy are needed to test new therapeutics before human clinical trials. HYPOTHESIS: Our objective is to develop a pediatric sepsis-induced coagulopathy swine model that last 70 hours. METHODS AND MODELS: Ten 3 weeks old piglets, implanted with telemetry devices for continuous hemodynamic monitoring, were IV injected with MRSA (n = 6) (USA300, Texas Children's Hospital 1516 strain) at 1 × 109 colony forming units/kg or saline (n = 4). Fluid resuscitation was given for heart rate greater than 50% or mean arterial blood pressure less than 30% from baseline. Acetaminophen and dextrose were provided as indicated. Point-of-care complete blood count, prothrombin time (PT), activated thromboplastin time, d-dimer, fibrinogen, and specialized coagulation assays were performed at pre- and post-injection, at 0, 24, 48, 60, and 70 hours. Piglets were euthanized and necropsies performed. RESULTS: Compared with the saline treated piglets (control), the septic piglets within 24 hours had significantly lower neurologic and respiratory scores. Over time, PT, d-dimer, and fibrinogen increased, while platelet counts and activities of factors V, VII, protein C, antithrombin, and a disintegrin and metalloproteinase with thrombospondin-1 motifs (13th member of the family) (ADAMTS-13) decreased significantly in septic piglets compared with control. Histopathologic examination showed minor focal organ injuries including microvascular thrombi and necrosis in the kidney and liver of septic piglets. INTERPRETATIONS AND CONCLUSIONS: We established a 70-hour swine model of MRSA sepsis-induced coagulopathy with signs of consumptive coagulopathy, disseminated microvascular thrombosis, and early organ injuries with histological minor focal organ injuries. This model is clinically relevant to pediatric sepsis and can be used to study dysregulated host immune response and coagulopathy to infection, identify potential early biomarkers, and to test new therapeutics.

17.
Am J Physiol Endocrinol Metab ; 302(6): E674-86, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22215651

RESUMEN

Orogastric tube feeding is indicated for neonates with impaired ability to ingest and can be administered by intermittent bolus or continuous schedule. Our aim was to determine whether feeding modalities affect muscle protein deposition and to identify mechanisms involved. Neonatal pigs were overnight fasted (FAS) or fed the same amount of food continuously (CON) or intermittently (INT; 7 × 4 h meals) for 29 h. For 8 h, between hours 20 and 28, pigs were infused with [(2)H(5)]phenylalanine and [(2)H(2)]tyrosine, and amino acid (AA) net balances were measured across the hindquarters. Insulin, branched-chain AA, phenylalanine, and tyrosine arterial concentrations and whole body phenylalanine and tyrosine fluxes were greater for INT after the meal than for CON or FAS. The activation of signaling proteins leading to initiation of mRNA translation, including eukaryotic initiation factor (eIF)4E·eIF4G complex formation in muscle, was enhanced by INT compared with CON feeding or FAS. Signaling proteins of protein degradation were not affected by feeding modalities except for microtubule-associated protein light chain 3-II, which was highest in the FAS. Across the hindquarters, AA net removal increased for INT but not for CON or FAS, with protein deposition greater for INT. This was because protein synthesis increased following feeding for INT but remained unchanged for CON and FAS, whereas there was no change in protein degradation across any dietary treatment. These results suggest that muscle protein accretion in neonates is enhanced with intermittent bolus to a greater extent than continuous feeding, mainly by increased protein synthesis.


Asunto(s)
Ingestión de Alimentos/fisiología , Metabolismo/fisiología , Proteínas Musculares/metabolismo , Transducción de Señal/fisiología , Algoritmos , Aminoácidos/administración & dosificación , Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Western Blotting , Dieta , Factor 4E Eucariótico de Iniciación/metabolismo , Ayuno/fisiología , Femenino , Miembro Posterior/anatomía & histología , Hidroxilación , Insulina/sangre , Masculino , Proteínas Musculares/biosíntesis , Fenilalanina/metabolismo , Porcinos , Factores de Tiempo , Tirosina/metabolismo
18.
Am J Physiol Regul Integr Comp Physiol ; 302(6): R682-90, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22277935

RESUMEN

Accretion rates of muscle protein are elevated in normal neonates, but this anabolic drive decreases with maturation. As this change occurs, it is not known whether development also influences muscle protein catabolism induced by sepsis. We hypothesize that protein degradation in skeletal muscle induced by endotoxemia becomes more severe as the neonate develops. Fasted 7- and 26-day-old pigs were infused for 8 h with LPS (0 and 10 µg·kg(-1)·h(-1)), while plasma amino acids (AA), 3-methylhistidine (3-MH), and α-actin concentrations and muscle protein degradation signal activation were determined (n = 5-7/group/age). Plasma full-length α-actin was greater in 7- than 26-day-old pigs, suggesting a higher baseline protein turnover in neonatal pigs. LPS increased plasma total AA, 3-MH, and full-length and cleaved α-actin in 26- than in 7-day-old pigs. In muscle of both age groups, LPS increased AMPK and NF-κB phosphorylation, the abundances of activated caspase 3 and E-3 ligases MuRF1 and atrogin1, as well as the abundance of cleaved α-actin, suggesting activation of muscle proteolysis by endotoxin in muscle. LPS decreased Forkhead box 01 (Fox01) and Fox04 phosphorylation and increased procaspase 3 abundance in muscle of 26-day-old pigs despite the lack of effect of LPS on PKB phosphorylation. The results suggest that skeletal muscle in healthy neonatal pigs maintains high baseline degradation signal activation that cannot be enhanced by endotoxin, but as maturation advances, the effect of LPS on muscle protein catabolism manifests its severity.


Asunto(s)
Animales Recién Nacidos/metabolismo , Endotoxemia/metabolismo , Infecciones por Escherichia coli/metabolismo , Metabolismo/fisiología , Músculo Esquelético/metabolismo , Índice de Severidad de la Enfermedad , Porcinos/crecimiento & desarrollo , Quinasas de la Proteína-Quinasa Activada por el AMP , Actinas/sangre , Aminoácidos/sangre , Animales , Animales Recién Nacidos/microbiología , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Endotoxemia/fisiopatología , Endotoxinas/farmacología , Infecciones por Escherichia coli/fisiopatología , Insulina/sangre , Metabolismo/efectos de los fármacos , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Porcinos/metabolismo
19.
Pediatr Res ; 71(4 Pt 1): 324-31, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22391631

RESUMEN

INTRODUCTION: Leucine (Leu) activates mammalian target of rapamycin (mTOR) to upregulate protein synthesis (PS). RESULTS: PS in skeletal muscles, heart, liver, pancreas, and jejunum, but not kidney, were greater in low protein supplemented with Leu (LP+L) than LP, but lower than high protein (HP). In longissimus dorsi muscle, protein kinase B phosphorylation was similar in LP and LP+L, but lower than HP. Although less than HP, p70 ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor (eIF) 4E binding protein 1 (4EBP1) association with regulatory associated protein of mammalian target of rapamycin was greater in LP+L than LP, resulting in higher S6K1 and 4EBP1 phosphorylation. Feeding LP+L vs. LP decreased 4EBP1·eIF4E and increased eIF4E·eIF4G formation, but not to HP. Similar results were obtained for S6K1 and 4EBP1 phosphorylation in gastrocnemius, masseter, heart, liver, pancreas, and jejunum, but not kidney. eIF2α and elongation factor 2 phosphorylation was unaffected by treatment. DICUSSION: Our results suggest that enteral Leu supplementation of a low protein diet enhances PS in most tissues through mTOR complex 1 pathways. METHODS: To examine enteral Leu effects on PS and signaling activation, 5-d-old piglets were fed for 24 h diets containing: (i) LP, (ii) LP+L, or (iii) HP.


Asunto(s)
Leucina/uso terapéutico , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Suplementos Dietéticos , Nutrición Enteral/métodos , Factor 4E Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/química , Factores Eucarióticos de Iniciación/química , Glucólisis , Insulina/sangre , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Porcinos , Factores de Tiempo , Distribución Tisular
20.
Animals (Basel) ; 12(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35327117

RESUMEN

The buoyancy of eggs and embryos is associated with successful development in pelagic fish. Buoyancy is the result of oocyte hydration, which depends on the osmotic force exerted by free amino acids (FAA) generated by yolk proteolysis, and cathepsins are the main enzymes involved in this process. Seriola lalandi is a pelagic fish whose farming has been hampered by development failure that have been partially attributed to decreased buoyancy of embryos. Therefore, the aim of this study was to compare the mRNA expression and activity of cathepsins B, D, and L, as well as the FAA content in floating and low-floating embryos at different developmental stages. The chosen stages were eggs, morula, blastula, gastrula and 24 h embryos. Complementary assessments showed that there were no differences attributed to buoyancy status in embryo and oil droplet diameters, as well as the transcriptional status at any developmental stage. Cathepsin B did not show differences in mRNA expression or activity related to buoyancy at any stage. Cathepsin D displayed higher transcript and activity levels only in low-floating eggs compared with those floating. Cathepsin L showed higher expression in floating eggs and 24 h embryos compared with that of low-floating, but the activity of this enzyme was higher in floating eggs and morula. Total FAA content constantly decreased throughout development in floating embryos, but it was always higher than low-floating embryos until gastrula stage. In 24 h embryos floating and low-floating embryos share similar quantities of FAA. In summary, differences in the expression and activity of cathepsins between floating and low-floating embryos could be revealed at specific embryonic stages, suggesting different functions of these enzymes throughout development. Besides 24 h embryos, FAA content seems to be a decisive factor for buoyancy of embryos during early development of S. lalandi. Overall, considering the main role of cathepsins and FAA in buoyancy acquisition process and therefore in both embryo quality and viability, our study identifies good marker candidates to evaluate embryo quality in the farming of this species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA