Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chembiochem ; 21(17): 2540-2548, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32501630

RESUMEN

Spectral resolution is the key to unleashing the structural and dynamic information contained in NMR spectra. Fast magic-angle spinning (MAS) has recently revolutionized the spectroscopy of biomolecular solids. Herein, we report a further remarkable improvement in the resolution of the spectra of four fully protonated proteins and a small drug molecule by pushing the MAS rotation frequency higher (150 kHz) than the more routinely used 100 kHz. We observed a reduction in the average homogeneous linewidth by a factor of 1.5 and a decrease in the observed linewidth by a factor 1.25. We conclude that even faster MAS is highly attractive and increases mass sensitivity at a moderate price in overall sensitivity.


Asunto(s)
Metilhidrazinas/química , Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Protones
2.
J Biomol NMR ; 73(1-2): 19-29, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30680507

RESUMEN

We report linewidth and proton T1, T1ρ and T2' relaxation data of the model protein ubiquitin acquired at MAS frequencies up to 126 kHz. We find a predominantly linear improvement in linewidths and coherence decay times of protons with increasing spinning frequency in the range from 93 to 126 kHz. We further attempt to gain insight into the different contributions to the linewidth at fast MAS using site-specific analysis of proton relaxation parameters and present bulk relaxation times as a function of the MAS frequency. For microcrystalline fully-protonated ubiquitin, inhomogeneous contributions are only a minor part of the proton linewidth, and at 126 kHz MAS coherent effects are still dominating. We furthermore present site-specific proton relaxation rate constants during a spinlock at 126 kHz MAS, as well as MAS-dependent bulk T1ρ (1HN).


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Resonancia Magnética Nuclear Biomolecular/instrumentación , Proteínas , Protones , Ubiquitina/química
3.
J Am Chem Soc ; 139(35): 12165-12174, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28780861

RESUMEN

Solid-state NMR is becoming a viable alternative for obtaining information about structures and dynamics of large biomolecular complexes, including ones that are not accessible to other high-resolution biophysical techniques. In this context, methods for probing protein-protein interfaces at atomic resolution are highly desirable. Solvent paramagnetic relaxation enhancements (sPREs) proved to be a powerful method for probing protein-protein interfaces in large complexes in solution but have not been employed toward this goal in the solid state. We demonstrate that 1H and 15N relaxation-based sPREs provide a powerful tool for characterizing intermolecular interactions in large assemblies in the solid state. We present approaches for measuring sPREs in practically the entire range of magic angle spinning frequencies used for biomolecular studies and discuss their benefits and limitations. We validate the approach on crystalline GB1, with our experimental results in good agreement with theoretical predictions. Finally, we use sPREs to characterize protein-protein interfaces in the GB1 complex with immunoglobulin G (IgG). Our results suggest the potential existence of an additional binding site and provide new insights into GB1:IgG complex structure that amend and revise the current model available from studies with IgG fragments. We demonstrate sPREs as a practical, widely applicable, robust, and very sensitive technique for determining intermolecular interaction interfaces in large biomolecular complexes in the solid state.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Solventes/química , Cristalización , Modelos Moleculares , Unión Proteica
4.
J Biomol NMR ; 63(2): 165-86, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26267840

RESUMEN

We discuss the optimum experimental conditions to obtain assignment spectra for solid proteins at magic-angle spinning (MAS) frequencies around 100 kHz. We present a systematic examination of the MAS dependence of the amide proton T 2' times and a site-specific comparison of T 2' at 93 kHz versus 60 kHz MAS frequency. A quantitative analysis of transfer efficiencies of building blocks, as they are used for typical 3D experiments, was performed. To do this, we compared dipolar-coupling and J-coupling based transfer steps. The building blocks were then combined into 3D experiments for sequential resonance assignment, where we evaluated signal-to-noise ratio and information content of the different 3D spectra in order to identify the best assignment strategy. Based on this comparison, six experiments were selected to optimally assign the model protein ubiquitin, solely using spectra acquired at 93 kHz MAS. Within 3 days of instrument time, the required spectra were recorded from which the backbone resonances have been assigned to over 96%.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química
5.
Front Mol Biosci ; 9: 828785, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35425812

RESUMEN

In nuclear magnetic resonance spectroscopy of proteins, methyl protons play a particular role as extremely sensitive reporters on dynamics, allosteric effects, and protein-protein interactions, accessible even in high-molecular-weight systems approaching 1 MDa. The notorious issue of their chemical shift assignment is addressed here by a joint use of solid-state 1H-detected methods at very fast (nearly 100 kHz) magic-angle spinning, partial deuteration, and high-magnetic fields. The suitability of a series of RF schemes is evaluated for the efficient coherence transfer across entire 13C side chains of methyl-containing residues, which is key for establishing connection between methyl and backbone 1H resonances. The performance of ten methods for recoupling of either isotropic 13C-13C scalar or anisotropic dipolar interactions (five variants of TOBSY, FLOPSY, DIPSI, WALTZ, RFDR, and DREAM) is evaluated experimentally at two state-of-the-art magic-angle spinning (55 and 94.5 kHz) and static magnetic field conditions (18.8 and 23.5 T). Model isotopically labeled compounds (alanine and Met-Leu-Phe tripeptide) and ILV-methyl and amide-selectively protonated, and otherwise deuterated chicken α-spectrin SH3 protein are used as convenient reference systems. Spin dynamics simulations in SIMPSON are performed to determine optimal parameters of these RF schemes, up to recently experimentally attained spinning frequencies (200 kHz) and B 0 field strengths (28.2 T). The concept of linearization of 13C side chain by appropriate isotope labeling is revisited and showed to significantly increase sensitivity of methyl-to-backbone correlations. A resolution enhancement provided by 4D spectroscopy with non-uniform (sparse) sampling is demonstrated to remove ambiguities in simultaneous resonance assignment of methyl proton and carbon chemical shifts.

6.
Chem Commun (Camb) ; 57(34): 4110-4113, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33908496

RESUMEN

We present a first report on the detection of three different C6 conformers of cellulose in spruce, as revealed by solid-state 1H-13C correlation spectra. The breakthrough in 1H resolution is achieved by magic-angle spinning in the regime of 150 kHz. The suppression of dense dipolar network of 1H provides inverse detected 13C spectra at a good sensitivity even in natural samples. We find that the glycosidic linkages are initially more ordered in spruce than maple, but a thermal treatment of spruce leads to a more heterogeneous packing order of the remaining cellulose fibrils.

7.
J Phys Chem Lett ; 11(19): 8077-8083, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32880459

RESUMEN

Proton-detected solid-state NMR has emerged as a powerful analytical technique in structural elucidation via 1H-1H correlations, which are mostly established by broadband methods. We propose a new class of frequency-selective homonuclear recoupling methods to selectively enhance 1H-1H correlations of interest under ultrafast magic-angle spinning (MAS). These methods, dubbed as selective phase-optimized recoupling (SPR), can provide a sensitivity enhancement by a factor of ∼3 over the widely used radio-frequency-driven recoupling (RFDR) to observe 1HN-1HN contacts in a protonated tripeptide N-formyl-Met-Leu-Phe (fMLF) under 150 kHz MAS and are successfully utilized to probe a long-range 1H-1H contact in a pharmaceutical molecule, the hydrochloride form of pioglitazone (PIO-HCl). SPR is not only highly efficient in frequency-selective recoupling but also easy to implement, imparting to it great potential to probe 1H-1H contacts for the structural elucidation of organic solids such as proteins and pharmaceuticals under ultrafast MAS conditions.

8.
Chem Commun (Camb) ; 54(74): 10459-10462, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30156225

RESUMEN

We report the preparation of protofibrils from oligomeric Aß40 aggregates, which have been incubated under spatially constrained conditions. The molecular structure of the resultant protofibrils is highly homogeneous, suggesting that the phenomenon of structural polymorphism commonly observed in Aß40 fibrils may be largely due to multiple nucleation events.


Asunto(s)
Péptidos beta-Amiloides/química , Micelas , Fragmentos de Péptidos/química , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA