Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(11): e1010495, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36374936

RESUMEN

Homologous recombination (HR) plays an essential role in the maintenance of genome stability by promoting the repair of cytotoxic DNA double strand breaks (DSBs). More recently, the HR pathway has emerged as a core component of the response to replication stress, in part by protecting stalled replication forks from nucleolytic degradation. In that regard, the mammalian RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have been involved in both HR-mediated DNA repair and collapsed replication fork resolution. Still, it remains largely obscure how they participate in both processes, thereby maintaining genome stability and preventing cancer development. To gain better insight into their contribution in cellulo, we mapped the proximal interactome of the classical RAD51 paralogs using the BioID approach. Aside from identifying the well-established BCDX2 and CX3 sub-complexes, the spliceosome machinery emerged as an integral component of our proximal mapping, suggesting a crosstalk between this pathway and the RAD51 paralogs. Furthermore, we noticed that factors involved RNA metabolic pathways are significantly modulated within the BioID of the classical RAD51 paralogs upon exposure to hydroxyurea (HU), pointing towards a direct contribution of RNA processing during replication stress. Importantly, several members of these pathways have prognostic potential in breast cancer (BC), where their RNA expression correlates with poorer patient outcome. Collectively, this study uncovers novel functionally relevant partners of the different RAD51 paralogs in the maintenance of genome stability that could be used as biomarkers for the prognosis of BC.


Asunto(s)
Inestabilidad Genómica , Recombinasa Rad51 , Animales , Humanos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Inestabilidad Genómica/genética , Recombinación Homóloga/genética , Roturas del ADN de Doble Cadena , ARN , Reparación del ADN/genética , Mamíferos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
2.
EMBO Rep ; 23(1): e51041, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34758190

RESUMEN

The heterochromatin protein HP1 plays a central role in the maintenance of genome stability but little is known about how HP1 is controlled. Here, we show that the zinc finger protein POGZ promotes the presence of HP1 at DNA double-strand breaks (DSBs) in human cells. POGZ depletion delays the resolution of DSBs and sensitizes cells to different DNA-damaging agents, including cisplatin and talazoparib. Mechanistically, POGZ promotes homology-directed DNA repair by retaining the BRCA1/BARD1 complex at DSBs in an HP1-dependent manner. In vivo CRISPR inactivation of Pogz is embryonically lethal. Pogz haploinsufficiency (Pogz+ /delta) results in developmental delay, impaired intellectual abilities, hyperactive behaviour and a compromised humoral immune response in mice, recapitulating the main clinical features of the White Sutton syndrome (WHSUS). Pogz+ /delta mice are further radiosensitive and accumulate DSBs in diverse tissues, including the spleen and brain. Altogether, our findings identify POGZ as an important player in homology-directed DNA repair both in vitro and in vivo.


Asunto(s)
Homólogo de la Proteína Chromobox 5 , Reparación del ADN , Discapacidad Intelectual , Reparación del ADN por Recombinación , Transposasas , Animales , Homólogo de la Proteína Chromobox 5/genética , Homólogo de la Proteína Chromobox 5/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN , Roturas del ADN de Doble Cadena , Humanos , Discapacidad Intelectual/genética , Ratones , Transposasas/genética , Transposasas/metabolismo
3.
Mol Cell ; 61(3): 405-418, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26774285

RESUMEN

DNA double-strand break repair by homologous recombination is initiated by the formation of 3' single-stranded DNA (ssDNA) overhangs by a process termed end resection. Although much focus has been given to the decision to initiate resection, little is known of the mechanisms that regulate the ongoing formation of ssDNA tails. Here we report that DNA helicase B (HELB) underpins a feedback inhibition mechanism that curtails resection. HELB is recruited to ssDNA by interacting with RPA and uses its 5'-3' ssDNA translocase activity to inhibit EXO1 and BLM-DNA2, the nucleases catalyzing resection. HELB acts independently of 53BP1 and is exported from the nucleus as cells approach S phase, concomitant with the upregulation of resection. Consistent with its role as a resection antagonist, loss of HELB results in PARP inhibitor resistance in BRCA1-deficient tumor cells. We conclude that mammalian DNA end resection triggers its own inhibition via the recruitment of HELB.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Helicasas/metabolismo , Neoplasias Mamarias Experimentales/enzimología , Animales , Proteína BRCA1/genética , ADN Helicasas/deficiencia , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Retroalimentación Fisiológica , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Interferencia de ARN , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Fase S , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/genética
4.
Hum Mutat ; 43(3): 285-298, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34923718

RESUMEN

Defects in DNA repair genes have been extensively associated with cancer susceptibility. Germline pathogenic variants (GPV) in genes involved in homologous recombination repair pathways predispose to cancers arising mainly in the breast and ovary, but also other tissues. The RAD51 paralogs RAD51C and RAD51D were included in this group 10 years ago when germline variants were associated with non-BRCA1/2 familial ovarian cancer. Here, we have reviewed the landscape of RAD51C and RAD51D germline variants in cancer reported in the literature during the last decade, integrating this list with variants identified by in-house patient screening. A comprehensive catalog of 341 variants that have been classified applying ACMG/AMP criteria has been generated pinpointing the existence of recurrent variants in both genes. Recurrent variants have been extensively discussed compiling data on population frequencies and functional characterization if available, highlighting variants that have not been fully characterized yet to properly establish their pathogenicity. Finally, we have complemented this data with relevant information regarding the conservation of mutated residues among RAD51 paralogs and modeling of putative hotspot areas, which contributes to generating an exhaustive update on these two cancer predisposition genes.


Asunto(s)
Proteínas de Unión al ADN , Predisposición Genética a la Enfermedad , Neoplasias Ováricas , Proteínas de Unión al ADN/genética , Femenino , Células Germinativas , Mutación de Línea Germinal/genética , Humanos , Neoplasias Ováricas/genética
5.
EMBO J ; 37(18)2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30154076

RESUMEN

DNA double-strand breaks (DSBs) can be repaired by two major pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)-based approach, we identify 11 high-confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ-mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1-, RIF1-, and REV7-dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision-making process during DSB repair.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Proteínas Mad2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Fase G2/genética , Células HEK293 , Humanos , Proteínas Mad2/genética , Fase S/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
6.
Genome Res ; 29(3): 439-448, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30718334

RESUMEN

The homologous recombination repair (HRR) pathway repairs DNA double-strand breaks in an error-free manner. Mutations in HRR genes can result in increased mutation rate and genomic rearrangements, and are associated with numerous genetic disorders and cancer. Despite intensive research, the HRR pathway is not yet fully mapped. Phylogenetic profiling analysis, which detects functional linkage between genes using coevolution, is a powerful approach to identify factors in many pathways. Nevertheless, phylogenetic profiling has limited predictive power when analyzing pathways with complex evolutionary dynamics such as the HRR. To map novel HRR genes systematically, we developed clade phylogenetic profiling (CladePP). CladePP detects local coevolution across hundreds of genomes and points to the evolutionary scale (e.g., mammals, vertebrates, animals, plants) at which coevolution occurred. We found that multiscale coevolution analysis is significantly more biologically relevant and sensitive to detect gene function. By using CladePP, we identified dozens of unrecognized genes that coevolved with the HRR pathway, either globally across all eukaryotes or locally in different clades. We validated eight genes in functional biological assays to have a role in DNA repair at both the cellular and organismal levels. These genes are expected to play a role in the HRR pathway and might lead to a better understanding of missing heredity in HRR-associated cancers (e.g., heredity breast and ovarian cancer). Our platform presents an innovative approach to predict gene function, identify novel factors related to different diseases and pathways, and characterize gene evolution.


Asunto(s)
Evolución Molecular , Reparación del ADN por Recombinación , Programas Informáticos , Animales , Enzimas Reparadoras del ADN/genética , Sitios Genéticos , Filogenia , Plantas/genética
7.
Nature ; 528(7582): 422-6, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26649820

RESUMEN

DNA repair by homologous recombination is highly suppressed in G1 cells to ensure that mitotic recombination occurs solely between sister chromatids. Although many homologous recombination factors are cell-cycle regulated, the identity of the events that are both necessary and sufficient to suppress recombination in G1 cells is unknown. Here we report that the cell cycle controls the interaction of BRCA1 with PALB2-BRCA2 to constrain BRCA2 function to the S/G2 phases in human cells. We found that the BRCA1-interaction site on PALB2 is targeted by an E3 ubiquitin ligase composed of KEAP1, a PALB2-interacting protein, in complex with cullin-3 (CUL3)-RBX1 (ref. 6). PALB2 ubiquitylation suppresses its interaction with BRCA1 and is counteracted by the deubiquitylase USP11, which is itself under cell cycle control. Restoration of the BRCA1-PALB2 interaction combined with the activation of DNA-end resection is sufficient to induce homologous recombination in G1, as measured by RAD51 recruitment, unscheduled DNA synthesis and a CRISPR-Cas9-based gene-targeting assay. We conclude that the mechanism prohibiting homologous recombination in G1 minimally consists of the suppression of DNA-end resection coupled with a multi-step block of the recruitment of BRCA2 to DNA damage sites that involves the inhibition of BRCA1-PALB2-BRCA2 complex assembly. We speculate that the ability to induce homologous recombination in G1 cells with defined factors could spur the development of gene-targeting applications in non-dividing cells.


Asunto(s)
Fase G1 , Recombinación Homóloga , Secuencia de Aminoácidos , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas Portadoras/metabolismo , Línea Celular , Proteínas Cullin/metabolismo , ADN/metabolismo , Daño del ADN , Reparación del ADN , Proteína del Grupo de Complementación N de la Anemia de Fanconi , Fase G2 , Marcación de Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Recombinasa Rad51/metabolismo , Fase S , Tioléster Hidrolasas/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
8.
Nature ; 521(7553): 537-540, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25799990

RESUMEN

Appropriate repair of DNA lesions and the inhibition of DNA repair activities at telomeres are crucial to prevent genomic instability. By fuelling the generation of genetic alterations and by compromising cell viability, genomic instability is a driving force in cancer and ageing. Here we identify MAD2L2 (also known as MAD2B or REV7) through functional genetic screening as a novel factor controlling DNA repair activities at mammalian telomeres. We show that MAD2L2 accumulates at uncapped telomeres and promotes non-homologous end-joining (NHEJ)-mediated fusion of deprotected chromosome ends and genomic instability. MAD2L2 depletion causes elongated 3' telomeric overhangs, indicating that MAD2L2 inhibits 5' end resection. End resection blocks NHEJ while committing to homology-directed repair, and is under the control of 53BP1, RIF1 and PTIP. Consistent with MAD2L2 promoting NHEJ-mediated telomere fusion by inhibiting 5' end resection, knockdown of the nucleases CTIP or EXO1 partially restores telomere-driven genomic instability in MAD2L2-depleted cells. Control of DNA repair by MAD2L2 is not limited to telomeres. MAD2L2 also accumulates and inhibits end resection at irradiation-induced DNA double-strand breaks and promotes end-joining of DNA double-strand breaks in several settings, including during immunoglobulin class switch recombination. These activities of MAD2L2 depend on ATM kinase activity, RNF8, RNF168, 53BP1 and RIF1, but not on PTIP, REV1 and REV3, the latter two acting with MAD2L2 in translesion synthesis. Together, our data establish MAD2L2 as a crucial contributor to the control of DNA repair activity by 53BP1 that promotes NHEJ by inhibiting 5' end resection downstream of RIF1.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas Mad2/metabolismo , Reparación del ADN por Recombinación , Telómero/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN por Unión de Extremidades/genética , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Reparación del ADN por Recombinación/genética , Proteínas Represoras , Telómero/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina-Proteína Ligasas/metabolismo
9.
Mol Cell ; 49(5): 872-83, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23333306

RESUMEN

DNA double-strand break (DSB) repair pathway choice is governed by the opposing activities of 53BP1 and BRCA1. 53BP1 stimulates nonhomologous end joining (NHEJ), whereas BRCA1 promotes end resection and homologous recombination (HR). Here we show that 53BP1 is an inhibitor of BRCA1 accumulation at DSB sites, specifically in the G1 phase of the cell cycle. ATM-dependent phosphorylation of 53BP1 physically recruits RIF1 to DSB sites, and we identify RIF1 as the critical effector of 53BP1 during DSB repair. Remarkably, RIF1 accumulation at DSB sites is strongly antagonized by BRCA1 and its interacting partner CtIP. Lastly, we show that depletion of RIF1 is able to restore end resection and RAD51 loading in BRCA1-depleted cells. This work therefore identifies a cell cycle-regulated circuit, underpinned by RIF1 and BRCA1, that governs DSB repair pathway choice to ensure that NHEJ dominates in G1 and HR is favored from S phase onward.


Asunto(s)
Proteína BRCA1/genética , Proteínas Portadoras/genética , Ciclo Celular/genética , Reparación del ADN , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Proteínas de Unión a Telómeros/genética , Proteína BRCA1/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Reparación del ADN por Unión de Extremidades/genética , Endodesoxirribonucleasas , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fase S , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
10.
Nature ; 499(7456): 50-4, 2013 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-23760478

RESUMEN

53BP1 (also called TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand-break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains unknown as its relocalization involves recognition of histone H4 Lys 20 (H4K20) methylation by its Tudor domain. Here we elucidate how vertebrate 53BP1 is recruited to the chromatin that flanks DSB sites. We show that 53BP1 recognizes mononucleosomes containing dimethylated H4K20 (H4K20me2) and H2A ubiquitinated on Lys 15 (H2AK15ub), the latter being a product of RNF168 action on chromatin. 53BP1 binds to nucleosomes minimally as a dimer using its previously characterized methyl-lysine-binding Tudor domain and a carboxy-terminal extension, termed the ubiquitination-dependent recruitment (UDR) motif, which interacts with the epitope formed by H2AK15ub and its surrounding residues on the H2A tail. 53BP1 is therefore a bivalent histone modification reader that recognizes a histone 'code' produced by DSB signalling.


Asunto(s)
Daño del ADN , Histonas/química , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal , Proteína 1 de Unión al Supresor Tumoral P53
11.
Immunogenetics ; 70(8): 495-509, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29696366

RESUMEN

Several immune regulatory cell types participate in the protection against autoimmune diseases such as autoimmune diabetes. Of these immunoregulatory cells, we and others have shown that peripheral CD4-CD8- double negative (DN) T cells can induce antigen-specific immune tolerance. Particularly, we have described that diabetes-prone mice exhibit a lower number of peripheral DN T cells compared to diabetes-resistant mice. Identifying the molecular pathways that influence the size of the DN T cell pool in peripheral lymphoid organs may thus be of interest for maintaining antigen-specific immune tolerance. Hence, through immunogenetic approaches, we found that two genetic loci linked to autoimmune diabetes susceptibility, namely Idd2 and Idd13, independently contribute to the partial restoration of DN T cell proportion in secondary lymphoid organs. We now extend these findings to show an interaction between the Idd2 and Idd13 loci in determining the number of DN T cells in secondary lymphoid organs. Using bioinformatics tools, we link potential biological pathways arising from interactions of genes encoded within the two loci. By focusing on cell cycle, we validate that both the Idd2 and Idd13 loci influence RAD51 expression as well as DN T cell progression through the cell cycle. Altogether, we find that genetic interactions between Idd2 and Idd13 loci modulate cell cycle progression, which contributes, at least in part, to defining the proportion of DN T cells in secondary lymphoid organs.


Asunto(s)
Diabetes Mellitus/inmunología , Tolerancia Inmunológica/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos de Diferenciación de Linfocitos T/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Diabetes Mellitus/genética , Epistasis Genética , Predisposición Genética a la Enfermedad/genética , Insulinas/metabolismo , Ratones , Ratones Transgénicos , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/metabolismo
12.
EMBO J ; 31(3): 679-91, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22085931

RESUMEN

The enzyme activation-induced deaminase (AID) deaminates deoxycytidine at the immunoglobulin genes, thereby initiating antibody affinity maturation and isotype class switching during immune responses. In contrast, off-target DNA damage caused by AID is oncogenic. Central to balancing immunity and cancer is AID regulation, including the mechanisms determining AID protein levels. We describe a specific functional interaction between AID and the Hsp40 DnaJa1, which provides insight into the function of both proteins. Although both major cytoplasmic type I Hsp40s, DnaJa1 and DnaJa2, are induced upon B-cell activation and interact with AID in vitro, only DnaJa1 overexpression increases AID levels and biological activity in cell lines. Conversely, DnaJa1, but not DnaJa2, depletion reduces AID levels, stability and isotype switching. In vivo, DnaJa1-deficient mice display compromised response to immunization, AID protein and isotype switching levels being reduced by half. Moreover, DnaJa1 farnesylation is required to maintain, and farnesyltransferase inhibition reduces, AID protein levels in B cells. Thus, DnaJa1 is a limiting factor that plays a non-redundant role in the functional stabilization of AID.


Asunto(s)
Citidina Desaminasa/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Animales , Línea Celular Tumoral , Femenino , Proteínas del Choque Térmico HSP40/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal
13.
Eur J Immunol ; 45(8): 2365-76, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25912253

RESUMEN

Activation induced deaminase (AID) initiates somatic hypermutation and class switch recombination of the Ig genes in antigen-activated B cells, underpinning antibody affinity maturation and isotype switching. AID can also be pathogenic by contributing to autoimmune diseases and oncogenic mutations. Moreover, AID can exert noncanonical functions when aberrantly expressed in epithelial cells. The lack of specific inhibitors prevents therapeutic applications to modulate AID functions. Here, we have exploited our previous finding that the HSP90 molecular chaperoning pathway stabilizes AID in B cells, to test whether HSP90 inhibitors could target AID in vivo. We demonstrate that chronic administration of HSP90 inhibitors decreases AID protein levels and isotype switching in immunized mice. HSP90 inhibitors also reduce disease severity in a mouse model of acute B-cell lymphoblastic leukemia in which AID accelerates disease progression. We further show that human AID protein levels are sensitive to HSP90 inhibition in normal and leukemic B cells, and that HSP90 inhibition prevents AID-dependent epithelial to mesenchymal transition in a human breast cancer cell line in vitro. Thus, we provide proof-of-concept that HSP90 inhibitors indirectly target AID in vivo and that endogenous human AID is widely sensitive to them, which could have therapeutic applications.


Asunto(s)
Linfocitos B/inmunología , Neoplasias de la Mama/inmunología , Citidina Desaminasa/inmunología , Proteínas HSP90 de Choque Térmico/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Animales , Linfocitos B/patología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/inmunología , Femenino , Humanos , Ratones , Ratones Noqueados , Neoplasias Experimentales/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
14.
Semin Immunol ; 24(4): 246-54, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22687198

RESUMEN

Activation induced deaminase (AID) plays a central role in adaptive immunity by initiating the processes of somatic hypermutation (SHM) and class switch recombination (CSR). On the other hand, AID also predisposes to lymphoma and plays a role in some autoimmune diseases, for which reasons AID expression and activity are regulated at various levels. Post-translational mechanisms regulating the amount and subcellular localization of AID are prominent in balancing AID physiological and pathological functions in B cells. Mechanisms regulating AID protein levels include stabilizing chaperones in the cytoplasm and proteins efficiently targeting AID to the proteasome within the nucleus. Nuclear export and cytoplasmic retention contribute to limit the amount of AID accessing the genome. Additionally, a number of factors have been implicated in AID active nuclear import. We review these intertwined mechanisms proposing two scenarios in which they could interact as a network or as a cycle for defining the optimal amount of AID protein. We also comparatively review the expression levels of AID necessary for its function during the immune response, present in different cancers as well as in those tissues in which AID has been implicated in epigenetic remodeling of the genome by demethylating DNA.


Asunto(s)
Citidina Desaminasa/inmunología , Animales , Autoinmunidad , Linfocitos B/enzimología , Linfocitos B/inmunología , Citidina Desaminasa/deficiencia , Citidina Desaminasa/genética , Regulación Enzimológica de la Expresión Génica , Haplotipos , Humanos , Neoplasias/enzimología , Neoplasias/inmunología
15.
Mol Cell Biol ; 44(1): 1-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38270191

RESUMEN

The ubiquitin proteasome system performs the covalent attachment of lysine 48-linked polyubiquitin chains to substrate proteins, thereby targeting them for degradation, while deubiquitylating enzymes (DUBs) reverse this process. This posttranslational modification regulates key features both of innate and adaptative immunity, including antigen presentation, protein homeostasis and signal transduction. Here we show that loss of one of the most highly expressed DUBs, Otub1, results in changes in murine splenic B cell subsets, leading to a significant increase in marginal zone and transitional B cells and a concomitant decrease in follicular B cells. We demonstrate that Otub1 interacts with the γ-subunit of the heterotrimeric G protein, Gng2, and modulates its ubiquitylation status, thereby controlling Gng2 stability. Proximal mapping of Gng2 revealed an enrichment in partners associated with chemokine signaling, actin cytoskeleton and cell migration. In line with these findings, we show that Otub1-deficient B cells exhibit greater Ca2+ mobilization, F-actin polymerization and chemotactic responsiveness to Cxcl12, Cxcl13 and S1P in vitro, which manifests in vivo as altered localization of B cells within the spleen. Together, our data establishes Otub1 as a novel regulator of G-protein coupled receptor signaling in B cells, regulating their differentiation and positioning in the spleen.


Asunto(s)
Quimiotaxis de Leucocito , Enzimas Desubicuitinizantes , Bazo , Ubiquitina , Animales , Ratones , Enzimas Desubicuitinizantes/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Bazo/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Cisteína Endopeptidasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Linfocitos B/metabolismo , Quimiotaxis de Leucocito/genética
16.
Res Sq ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496632

RESUMEN

Radiotherapy (RT) and anti-PD-L1 synergize to enhance local and distant (abscopal) tumor control. However, clinical results in humans have been variable. With the goal of improving clinical outcomes, we investigated the underlying synergistic mechanism focusing on a CD8+ PD-1+ Tcf-1+ stem-like T cell subset in the tumor-draining lymph node (TdLN). Using murine melanoma models, we found that RT + anti-PD-L1 induces a novel differentiation program in the TdLN stem-like population which leads to their expansion and differentiation into effector cells within the tumor. Our data indicate that optimal synergy between RT + anti-PD-L1 is dependent on the TdLN stem-like T cell population as either blockade of TdLN egress or specific stem-like T cell depletion reduced tumor control. Together, these data demonstrate a multistep stimulation of stem-like T cells following combination therapy which is initiated in the TdLN and completed in the tumor.

17.
Sci Rep ; 13(1): 8723, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253865

RESUMEN

Antigen-naive IgM-producing B cells are atheroprotective, whereas mature B cells producing class-switched antibodies promote atherosclerosis. Activation-induced cytidine deaminase (AID), which mediates class switch recombination (CSR), would thus be expected to foster atherosclerosis. Yet, AID also plays a major role in the establishment of B cell tolerance. We sought to define whether AID affects atherosclerotic plaque formation. We generated Ldlr-/- chimeras transplanted with bone marrow from Aicda-/- or wild-type (WT) mice, fed a HFD for 14 weeks. Decreased B cell maturation in Ldlr-/-Aicda-/- mice was demonstrated by 50% reduction in splenic and aortic BAFFR expression, a key signaling component of B2 cell maturation. This was associated with increased plasma IgM in Ldlr-/-Aicda-/- compared with Ldlr-/-WT animals. Importantly, Ldlr-/-Aicda-/- mice had reduced atherosclerotic lesion area (0.20 ± 0.03mm2) compared with Ldlr-/-WT (0.30 ± 0.04mm2, P < 0.05), although no differences in plaque composition were noted between groups. In addition, immunofluorescence analysis revealed increased splenic B and T cell areas independent of cell number. AID depletion directly inhibits atherosclerotic plaque formation.


Asunto(s)
Aterosclerosis , Citidina Desaminasa , Placa Aterosclerótica , Animales , Ratones , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Linfocitos B , Diferenciación Celular , Hidrolasas/metabolismo , Inmunoglobulina M/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Citidina Desaminasa/genética
18.
Sci Adv ; 9(32): eadf4082, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556550

RESUMEN

Interstrand DNA cross-links (ICLs) represent complex lesions that compromise genomic stability. Several pathways have been involved in ICL repair, but the extent of factors involved in the resolution of ICL-induced DNA double-strand breaks (DSBs) remains poorly defined. Using CRISPR-based genomics, we identified FIGNL1 interacting regulator of recombination and mitosis (FIRRM) as a sensitizer of the ICL-inducing agent mafosfamide. Mechanistically, we showed that FIRRM, like its interactor Fidgetin like 1 (FIGNL1), contributes to the resolution of RAD51 foci at ICL-induced DSBs. While the stability of FIGNL1 and FIRRM is interdependent, expression of a mutant of FIRRM (∆WCF), which stabilizes the protein in the absence of FIGNL1, allows the resolution of RAD51 foci and cell survival, suggesting that FIRRM has FIGNL1-independent function during DNA repair. In line with this model, FIRRM binds preferentially single-stranded DNA in vitro, raising the possibility that it directly contributes to RAD51 disassembly by interacting with DNA. Together, our findings establish FIRRM as a promoting factor of ICL repair.


Asunto(s)
Reparación del ADN , Recombinasa Rad51 , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas/genética , ADN/genética , Mitosis
19.
Blood Adv ; 7(14): 3485-3500, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-36920785

RESUMEN

Multiple myeloma (MM) is a hematological malignancy that emerges from antibody-producing plasma B cells. Proteasome inhibitors, including the US Food and Drug Administration-approved bortezomib (BTZ) and carfilzomib (CFZ), are frequently used for the treatment of patients with MM. Nevertheless, a significant proportion of patients with MM are refractory or develop resistance to this class of inhibitors, which represents a significant challenge in the clinic. Thus, identifying factors that determine the potency of proteasome inhibitors in MM is of paramount importance to bolster their efficacy in the clinic. Using genome-wide CRISPR-based screening, we identified a subunit of the mitochondrial pyruvate carrier (MPC) complex, MPC1, as a common modulator of BTZ response in 2 distinct human MM cell lines in vitro. We noticed that CRISPR-mediated deletion or pharmacological inhibition of the MPC complex enhanced BTZ/CFZ-induced MM cell death with minimal impact on cell cycle progression. In fact, targeting the MPC complex compromised the bioenergetic capacity of MM cells, which is accompanied by reduced proteasomal activity, thereby exacerbating BTZ-induced cytotoxicity in vitro. Importantly, we observed that the RNA expression levels of several regulators of pyruvate metabolism were altered in advanced stages of MM for which they correlated with poor patient prognosis. Collectively, this study highlights the importance of the MPC complex for the survival of MM cells and their responses to proteasome inhibitors. These findings establish mitochondrial pyruvate metabolism as a potential target for the treatment of MM and an unappreciated strategy to increase the efficacy of proteasome inhibitors in the clinic.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Estados Unidos , Humanos , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Antineoplásicos/uso terapéutico , Transportadores de Ácidos Monocarboxílicos/uso terapéutico , Bortezomib/farmacología , Bortezomib/uso terapéutico , Piruvatos/uso terapéutico
20.
Blood Adv ; 6(17): 5072-5084, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35793392

RESUMEN

Genome-wide CRISPR screens have been extremely useful in identifying therapeutic targets in diverse cancers by defining genes that are essential for malignant growth. However, most CRISPR screens were performed in vitro and thus cannot identify genes that are essential for interactions with the microenvironment in vivo. Here, we report genome-wide CRISPR screens in 2 in vivo murine models of acute myeloid leukemia (AML) driven by the KMT2A/MLLT3 fusion or by the constitutive coexpression of Hoxa9 and Meis1. Secondary validation using a focused library identified 72 genes specifically essential for leukemic growth in vivo, including components of the major histocompatibility complex class I complex, Cd47, complement receptor Cr1l, and the ß-4-galactosylation pathway. Importantly, several of these in vivo-specific hits have a prognostic effect or are inferred to be master regulators of protein activity in human AML cases. For instance, we identified Fermt3, a master regulator of integrin signaling, as having in vivo-specific dependency with high prognostic relevance. Overall, we show an experimental and computational pipeline for genome-wide functional screens in vivo in AML and provide a genome-wide resource of essential drivers of leukemic growth in vivo.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Leucemia Mieloide Aguda , Animales , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Transducción de Señal , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA