RESUMEN
As the general population's diet has shifted to reflect current weight-loss trends, there has been an increase in zero-calorie artificial sweetener usage. Sucralose (C12H19Cl3O8), commonly known as Splenda® in the USA, is a primary example of these sweeteners. In recent years, sucralose has been identified as an environmental contaminant that cannot easily be broken down via bacterial decomposition. This study focuses on the impact of sucralose presence on microbial communities in brackish and freshwater systems. Microbial respiration and fluorescence were measured as indicators of microbial activity in sucralose-dosed samples taken from both freshwater and estuarine marsh environments. Results showed a significant difference between microbial concentration and respiration when dosed with varying levels of sucralose. Diatom respiration implied a negative correlation of community abundance with sucralose concentration. The freshwater cyanobacterial respiration increased in the presence of sucralose, implying a positive correlation of community abundance with sucralose concentration. This was in direct contrast to its brackish water counterpart. However, further investigation is necessary to confirm any potential utility of these communities in the breakdown of sucralose in the marsh environment.
Asunto(s)
Monitoreo del Ambiente , Sacarosa/análogos & derivados , Humedales , Humanos , Edulcorantes/toxicidad , Agua Dulce , SueloRESUMEN
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals commonly found in everyday consumer products and are an emerging concern due to their ubiquitous presence in ecosystems around the world. PFAS exposure, which often occurs through contaminated water, has been linked to several adverse health effects in humans and wildlife. PFAS can be transported in surface water and storm runoff in the nearshore environment. Episodic events, such as hurricanes, are projected to increase in frequency and intensity, and a critical unanswered question is: how do episodic events influence the concentrations and distributions of emerging contaminants, such as PFAS, in coastal systems? Here, we investigated the impact of the 2019 Hurricane Dorian on the Florida coast to assess how natural disasters, such as hurricanes, influence the fate and transport of PFAS in surface water. Water samples collected throughout the St. Augustine Intracoastal waterway before, during, and after the storm were analyzed and compared with baseline concentrations. Ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was used in the detection and quantification of 23 and 17 PFAS, respectively. Perfluorooctane sulfonic acid (PFOS) was the compound with the highest concentration across all sampling sites. Mean PFOS levels showed the highest increase of 177% during the hurricane and returned to baseline levels after two days. Our findings highlight the need for continued research focused on understanding how large storms near all coastlines can impact the transport of environmental pollutants, such as PFOS, that can have adverse effects on human and environmental health. Further monitoring of PFAS in coastal systems is necessary to identify potential PFAS hotspots, investigate the impacts of episodic events on PFAS transport, develop mitigation practices capable of reducing the risk of PFAS exposure.
Asunto(s)
Ácidos Alcanesulfónicos , Tormentas Ciclónicas , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Ecosistema , Florida , Fluorocarburos/análisis , Humanos , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisisRESUMEN
Mangroves provide critical ecosystems services, contributing an estimated 42 billion US dollars to global fisheries, storing 25.5 million tons of carbon per year, and providing flood protection to over 15 million people annually. Yet, they are increasingly threatened by factors ranging from local resource exploitation to global climate change, with an estimated 35% of mangrove forests lost in the past two decades. These threats are difficult to manage due to the intrinsic characteristics of mangrove systems and their provisioning services, and their transboundary and pan-global nature. Due to their unique intertidal ecological niche, mangroves are often treated as a "common pool resource" within national legal frameworks, making them particularly susceptible to exploitation. Moreover, they form ecological connections through numerous biotic and abiotic processes that cross political boundaries. Because of these qualities a cross-scale nested framework of international, regional, and local coordination is necessary to successfully sustain mangrove ecosystems and their valuable services. Although coordination across the geopolitical spectrum is often cited as a need for effective management of common resources such as mangroves, there has been no formal analysis of mangrove multiscale governance. In this paper we address this gap by providing a comprehensive analysis of interactions between and within international, regional, and local mangrove management regimes and examine the challenges and opportunities such multiscale governance frameworks present. We highlight Costa Rica as a case study to demonstrate the universal relevance and potential of multi-scale governance and explore its downscale potential. Using Elinor Ostrom's principles for self-governance of the commons as our touchstone, we identify where improvements to the status quo could be implemented to increase its effectiveness of the current frameworks to meet the ongoing challenge of managing mangrove-derived resources and services in the face of a changing climate and human needs.
Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Cambio Climático , Explotaciones Pesqueras , Humanos , HumedalesRESUMEN
Nutrient homeostasis relates ambient stoichiometric conditions in an environment to the stoichiometry of living entities of that ecosystem. Plant nutrient sequestration in wetland ecosystems is a key process for downstream water quality. However, few studies have examined stoichiometric homeostasis of aquatic vegetation despite the importance of stoichiometry to plant nutrient uptake efficiency. This study investigated stoichiometric homeostasis of dominant emergent and submerged aquatic vegetation (EAV and SAV, respectively) within two treatment flow-ways of Everglades Stormwater Treatment Area 2 (STA-2). These flow-ways encompass a large gradient in plant nutrient availability. This study hypothesizes that wetland vegetation is homeostatic relative to ambient nutrients and consequently nutrient resorption does not vary along the nutrient gradient. We developed a framework to investigate how vegetation uptake and resorption of nutrients contribute separately to homeostasis. Overall, we determined that the wetland vegetation in this study was non-homeostatic with respect to differential uptake of nitrogen (N) versus phosphorus (P). In EAV, P resorption was relatively high and N resorption was moderate, and resorption efficiency did not vary significantly along the gradient. In separating the proportional contribution of resorption and uptake to the degree of homeostasis, resorption did not affect overall homeostatic status in EAV.
Asunto(s)
Purificación del Agua , Humedales , Ecosistema , Homeostasis , Nitrógeno , Nutrientes , Fósforo , Lluvia , Abastecimiento de AguaRESUMEN
Scenarios modeling can be a useful tool to plan for climate change. In this study, we help Everglades restoration planning to bolster climate change resiliency by simulating plausible ecosystem responses to three climate change scenarios: a Baseline scenario of 2010 climate, and two scenarios that both included 1.5 °C warming and 7% increase in evapotranspiration, and differed only by rainfall: either increase or decrease by 10%. In conjunction with output from a water-use management model, we used these scenarios to drive the Everglades Landscape Model to simulate changes in a suite of parameters that include both hydrologic drivers and changes to soil pattern and process. In this paper we focus on the freshwater wetlands; sea level rise is specifically addressed in prior work. The decreased rainfall scenario produced marked changes across the system in comparison to the Baseline scenario. Most notably, muck fire risk was elevated for 49% of the period of simulation in one of the three indicator regions. Surface water flow velocity slowed drastically across most of the system, which may impair soil processes related to maintaining landscape patterning. Due to lower flow volumes, this scenario produced decreases in parameters related to flow-loading, such as phosphorus accumulation in the soil, and methylmercury production risk. The increased rainfall scenario was hydrologically similar to the Baseline scenario due to existing water management rules. A key change was phosphorus accumulation in the soil, an effect of flow-loading due to higher inflow from water control structures in this scenario.
Asunto(s)
Cambio Climático , Ecosistema , Florida , Predicción , Modelos TeóricosRESUMEN
Interactions with resident species can affect the rate that expanding species invade novel areas. These interactions can be antagonistic (biotic resistance), where resident species hinder invasive establishment, or facilitative (biotic assistance), where residents promote invasive establishment. The predominance of resistance or assistance could vary with the abiotic context. We examined how the effects of a resident ecosystem engineer interact with abiotic stress to resist or assist the establishment of an expanding competitor. In Florida salt marshes, native cordgrass, Spartina alterniflora, is an influential ecosystem engineer that, when dead, exerts a legacy effect by forming persistent wrack patches. We examined how the legacy effect of Spartina wrack varies with spatial context and abiotic conditions to influence establishment of the northward-expanding black mangrove, Avicennia germinans. Field surveys documented that Spartina wrack and Avicennia propagules co-occur in the high intertidal zone, and we conducted two outdoor mesocosm experiments to investigate this association. Wrack positively affected propagule establishment when propagules were beneath wrack, but negatively affected establishment when propagules were above wrack. The abiotic tidal regime influences the magnitude of wrack effects by controlling ambient moisture, and the positive and negative effects of wrack were stronger in low moisture conditions that simulated desiccation stress during harsh neap tides. Thus, the same resident engineer can either resist or assist an expanding competitor and the magnitude of these effects depends on abiotic conditions. We propose that under harsh conditions, there is greater scope for an engineer's mediating influence to affect associated species, both positively and negatively.
Asunto(s)
Avicennia , Ecosistema , Florida , Poaceae , HumedalesRESUMEN
The balance of fresh and saline water is essential to estuarine ecosystem function. Along the fresh-brackish-saline water gradient within the C-43 canal/Caloosahatchee River Estuary (CRE), the quantity, timing and distribution of water, and associated water quality significantly influence ecosystem function. Long-term trends of water quality and quantity were assessed from Lake Okeechobee to the CRE between May 1978 and April 2016. Significant changes to monthly flow volumes were detected between the lake and the estuary which correspond to changes in upstream management. and climatic events. Across the 37-year period, total phosphorus (TP) flow-weighted mean (FWM) concentration significantly increased at the lake; meanwhile, total nitrogen (TN) FMW concentrations significantly declined at both the lake and estuary headwaters. Between May 1999 and April 2016, TN, TP, and total organic carbon (TOC), ortho-P, and ammonium conditions were assessed within the estuary at several monitoring locations. Generally, nutrient concentrations decreased from upstream to downstream with shifts in TN/TP from values > 20 in the freshwater portion, ~ 20 in the estuarine portion, and < 20 in the marine portion indicating a spatial shift in nutrient limitations along the continuum. Aquatic productivity analysis suggests that the estuary is net heterotrophic with productivity being negatively influenced by TP, TN, and TOC likely due to a combination of effects including shading by high color dissolved organic matter. We conclude that rainfall patterns, land use, and the resulting discharges of runoff drive the ecology of the C-43/CRE aquatic continuum and associated biogeochemistry rather than water management associated with Lake Okeechobee.
Asunto(s)
Monitoreo del Ambiente , Estuarios , Ecosistema , Lagos/química , Nitrógeno/análisis , Fósforo/análisis , Ríos , Contaminantes Químicos del Agua/análisis , Calidad del AguaRESUMEN
High-resolution diffuse reflectance spectra in the visible and near-infrared wavelengths were used to predict chemical properties of sediment samples obtained from Lake Okeechobee (FL, USA). Chemometric models yielded highly effective prediction (relative percent difference (RPD) = SD/RMSE >2) for some sediment properties including total magnesium (Mg), total calcium (Ca), total nitrogen (TN), total carbon (TC), and organic matter content (loss on ignition (LOI)). Predictions for iron (Fe), aluminum (Al), and various forms of phosphorus (total P (TP), HCl-extractable P (HCl-P), and KCl-extractable P (KCl-P)) were also sufficiently accurate (RPD > 1.5) to be considered useful; predictions for other P fractions as well as all pore water properties were poor. Notably, scanning wet sediments resulted in only a 7 % decline in RPD scores. Moreover, interpolation maps based on values predicted from wet sediment spectra captured the same spatial patterns for Ca, Mg, TC, TN, and TP as maps derived directly from wet chemistry, suggesting that field scanning of perpetually saturated sediments may be a viable option for expediting sample analysis and greatly reducing mapping costs. Indeed, the accuracy of spectral model predictions compared favorably with the accuracy of kriging model predictions derived from wet chemistry observations suggesting that, for some analytes, higher density spatial sampling enabled by use of field spectroscopy could increase the geographic accuracy of monitoring for changes in lake sediment chemical properties.
Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Lagos/química , Contaminantes Químicos del Agua/análisis , Agua , Aluminio/análisis , Calcio/análisis , Carbono/análisis , Florida , Hierro/análisis , Magnesio/análisis , Nitrógeno/análisis , Fósforo/análisis , Análisis Espectral/métodosRESUMEN
Based on previously published studies of elemental cycling in Everglades soils, we projected how soil biogeochemistry, specifically carbon, nitrogen, phosphorus, sulfur, and mercury might respond to climate change scenarios projected for 2060 by the South Florida Water Management Model. Water budgets and stage hydrographs from this model with future scenarios of a 10% increased or decreased rainfall, a 1.5 °C rise in temperature and associated increase in evapotranspiration (ET) and a 0.5 m rise in sea level were used to predict resulting effects on soil biogeochemistry. Precipitation is a much stronger driver of soil biogeochemical processes than temperature, because of links among water cover, redox conditions, and organic carbon accumulation in soils. Under the 10% reduced rainfall scenario, large portions of the Everglades will experience dry down, organic soil oxidation, and shifts in soil redox that may dramatically alter biogeochemical processes. Lowering organic soil surface elevation may make portions of the Everglades more vulnerable to sea level rise. The 10% increased rainfall scenario, while potentially increasing phosphorus, sulfur, and mercury loading to the ecosystem, would maintain organic soil integrity and redox conditions conducive to normal wetland biogeochemical element cycling. Effects of increased ET will be similar to those of decreased precipitation. Temperature increases would have the effect of increasing microbial processes driving biogeochemical element cycling, but the effect would be much less than that of precipitation. The combined effects of decreased rainfall and increased ET suggest catastrophic losses in carbon- and organic-associated elements throughout the peat-based Everglades.
Asunto(s)
Cambio Climático , Elementos Químicos , Suelo/química , Humedales , Carbono/análisis , Ecosistema , Florida , Predicción , Hidrología , Modelos Teóricos , Nitrógeno/análisis , Oxidación-Reducción , Fósforo/análisis , TemperaturaRESUMEN
The purpose of this forum is to respond to a rebuttal submitted by Julian et al., Environ Manag 55:1-5, 2015 where they outlined their overall disagreement with the data preparation, methods, and interpretation of results presented in Gabriel et al. (Environ Manag 53:583-593, 2014). Here, we provide background information on the research premise presented in Gabriel et al. (Environ Manag 53:583-593, 2014) and provide a defense for this work using five themes. In spite of what Julian et al. perceive as limitations in the sampling methods and analytical tools used for this work, the relationships found between fish total mercury and surface water sulfate concentrations in Gabriel et al. (Environ Manag 53:583-593, 2014) are comparable to relationships between pore water methylmercury (MeHg) and pore water sulfate found in past studies indicating that sulfate is important to MeHg production and bioaccumulation in the Everglades. Julian et al. state " there is no way to justify any ecosystem-wide sulfur strategy as a management approach to reduce mercury risk in the (Everglades) as suggested by Gabriel et al. (Environ Manag 53:583-593, 2014), Corrales et al. (Sci Tot Environ 409:2156-2162, 2011) and Orem et al. (Rev Environ Sci Technol 41 (S1):249-288, 2011)." We disagree, and having stated why sulfate input reduction to the Everglades may be the most effective means of reducing mercury in Everglades fish, it is important that research on sulfur and mercury biogeochemistry continues. If further studies support the relationship between sulfate loading reduction and MeHg reduction, sulfur mass balance studies should commence to (1) better quantify agricultural and connate seawater sulfate inputs and (2) define opportunities to reduce sulfate inputs to the Everglades ecosystem.
Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Ecosistema , Peces/metabolismo , Contaminación de Alimentos , Agua Dulce/química , Mercurio/análisis , Sulfatos/análisis , Contaminantes Químicos del Agua/análisis , AnimalesRESUMEN
Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1-20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA.
Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Ecosistema , Peces/metabolismo , Contaminación de Alimentos , Agua Dulce/química , Mercurio/análisis , Sulfatos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Monitoreo del Ambiente/estadística & datos numéricos , FloridaRESUMEN
The state of Florida contains over 1000 freshwater springs, fed by groundwater that provides 90 % of the drinking water for inhabitants. Freshwater springs are regarded as some of the cleanest water sources left on Earth, but recent studies regarding the extreme pervasiveness of per- and polyfluoroalkyl substances (PFAS) across the globe have called into question whether PFAS have infiltrated these vital water sources. In this study, 90 water samples (43 vents/40 runs/plus 7 additional surface samples) from 50 freshwater Florida springs were analyzed for the presence of 29 PFAS via ultra-high-performance liquid chromatography-tandem mass spectrometry. PFAS were detected in 63 % of the vent samples and 68 % of the run samples, with a total of 13 different quantifiable PFAS (>LOQ) present in at least one sample. Concentrations across samples ranged from 0.205 to 64.6 ng/L, with the most detected PFAS being perfluorobutanesulfonic acid (PFBS), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS). This data highlights the presence of PFAS in Florida springs, representing a potential health concern for spring water users and drinking water consumers, and suggests the need for further research regarding the possible contamination pathways of Florida's freshwater springs.
Asunto(s)
Monitoreo del Ambiente , Fluorocarburos , Agua Dulce , Manantiales Naturales , Contaminantes Químicos del Agua , Florida , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Agua Dulce/química , Ácidos Alcanesulfónicos/análisis , Caprilatos/análisisRESUMEN
Escherichia coli (E. coli) cells are present in fecal materials that can be the main source for disease-causing agents in water. As a result, E. coli is recommended as a water quality indicator. We have developed an innovative platform to detect E. coli for monitoring water quality on-site by integrating paper-based sample preparation with nucleic acid isothermal amplification. The platform carries out bacterial lysis and DNA enrichment onto a paper pad through ball-based valves for fluid control, with no need of laboratory equipment, followed by loop-mediated isothermal amplification (LAMP) in a battery-operated coffee mug, and colorimetric detection. We have used the platform to detect E. coli in environmental water samples in about 1 h, with a limit of quantitation of 0.2 CFU/mL, and 3 copies per reaction. The platform was confirmed for detecting multiple E. coli strains, and for water samples of different salt concentrations. We validated the functions of the platform by analyzing recreational water samples collected near the Atlantic Ocean that contain different concentrations of salt and bacteria.
Asunto(s)
Escherichia coli , Técnicas de Amplificación de Ácido Nucleico , Escherichia coli/genética , Bacterias/genética , Océano AtlánticoRESUMEN
The field of environmental DNA (eDNA) is advancing rapidly, yet human eDNA applications remain underutilized and underconsidered. Broader adoption of eDNA analysis will produce many well-recognized benefits for pathogen surveillance, biodiversity monitoring, endangered and invasive species detection, and population genetics. Here we show that deep-sequencing-based eDNA approaches capture genomic information from humans (Homo sapiens) just as readily as that from the intended target species. We term this phenomenon human genetic bycatch (HGB). Additionally, high-quality human eDNA could be intentionally recovered from environmental substrates (water, sand and air), holding promise for beneficial medical, forensic and environmental applications. However, this also raises ethical dilemmas, from consent, privacy and surveillance to data ownership, requiring further consideration and potentially novel regulation. We present evidence that human eDNA is readily detectable from 'wildlife' environmental samples as human genetic bycatch, demonstrate that identifiable human DNA can be intentionally recovered from human-focused environmental sampling and discuss the translational and ethical implications of such findings.
Asunto(s)
ADN Ambiental , Humanos , ADN Ambiental/análisis , Monitoreo del Ambiente , Biodiversidad , ADN , GenómicaRESUMEN
Per- and polyfluoroalkyl substances (PFAS) are a group of manufactured chemicals that are resistant to degradation and thus persistent in the environment. The presence, uptake, and accumulation of PFAS is dependent upon the physiochemical properties of the PFAS and matrix, as well as the environmental conditions since the time of release. The objective of this study was to measure the extent of PFAS contamination in surface water and sediment from nine vulnerable aquatic systems throughout Florida. PFAS were detected at all sampling locations with sediment exhibiting greater PFAS concentrations when compared to surface water. At most locations, elevated concentrations of PFAS were identified around areas of increased human activity, such as airports, military bases, and wastewater effluents. The results from the present study highlight the ubiquitous presence of PFAS in vital Florida waterways and filled an important gap in understanding the distribution of PFAS in dynamic, yet vulnerable, aquatic environments.
Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Florida , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Agua , Aguas ResidualesRESUMEN
Per- and polyfluoroalkyl substances (PFAS) are a class of manufactured chemicals that have been extensively utilized worldwide. We hypothesize that the presence, uptake, and accumulation of PFAS in aquatic vegetation (AV) is dependent upon several factors, such as the physiochemical properties of PFAS and proximity to potential sources. In this study, AV was collected from eight locations in Florida to investigate the PFAS presence, accumulation, and spatiotemporal distribution. PFAS were detected in AV at all sampling locations, with a range from 0.18 to 55 ng/g sum (∑)PFAS. Individual PFAS and their concentrations varied by sampling location, time, and AV species. A total of 12 PFAS were identified, with the greatest concentrations measured in macroalgae. The average bioconcentration factor (BCF) among all samples was 1225, indicating high PFAS accumulation in AV from surface water. The highest concentrations, across all AV types, were recorded in the Indian River Lagoon (IRL), a location with a history of elevated PFAS burdens. The present study represents the first investigation of PFAS in naturally existing estuarine AV, filling an important gap on PFAS partitioning within the environment, as well as providing insights into exposure pathways for aquatic herbivores. Examining the presence, fate, and transport of these persistent chemicals in Florida's waterways is critical for understanding their effect on environmental, wildlife, and human health.
Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Agua , Ríos , FloridaRESUMEN
Large-scale ecosystem restoration efforts, such as those in the Florida Everglades, can be long-term and resource intensive. To gauge success, restoration efforts must have a means to evaluate positive or negative results of instituted activities. Edaphic properties across the Everglades landscape have been determined to be a valuable metric for such evaluation, and as such, a baseline condition from which to make future comparisons and track ecosystem response is necessary. The objectives of this work were to document this baseline condition in the southern most hydrologic unit of the Everglades, Everglades National Park (ENP), and to determine if significant eco-partitioning of soil attributes exists that would suggest the need to focus monitoring efforts in particular eco-types within the ENP landscape. A total of 342 sites were sampled via soil coring and parameters such as total phosphorus (TP), total nitrogen (TN), total carbon (TC), total calcium, total magnesium, and bulk density were measured at three depth increments in the soil profile (floc, 0-10 cm, and 10-20 cm). Geostatistical analysis and GIS applications were employed to interpolate site-specific biogeochemical properties of soils across the entire extent of the ENP. Spatial patterns and eco-type comparisons suggest TC and TN to be highest in Shark River Slough (SRS) and the mangrove interface (MI), following trends of greatest organic soil accumulation. However, TP patterns suggest greatest storages in MI, SRS, and western marl and wet prairies. Eco-partitioning of soil constituents suggest local drivers of geology and hydrology are significant in determining potential areas to focus monitoring for future change detection.
Asunto(s)
Ecosistema , Suelo/análisis , Carbono/análisis , Monitoreo del Ambiente , Florida , Nitrógeno/análisis , Fósforo/análisisRESUMEN
Increasing rates of sea-level rise and wave action threaten coastal populations. Defense of shorelines by protection and restoration of wetlands has been invoked as a win-win strategy for humans and nature, yet evidence from field experiments supporting the wetland protection function is uncommon, as is the understanding of its context dependency. Here we provide evidence from field manipulations showing that the loss of wetland vegetation, regardless of disturbance size, increases the rate of erosion on wave-stressed shorelines. Vegetation removal (simulated disturbance) along the edge of salt marshes reveals that loss of wetland plants elevates the rate of lateral erosion and that extensive root systems, rather than aboveground biomass, are primarily responsible for protection against edge erosion in marshes. Meta-analysis further shows that disturbances that generate plant die-off on salt marsh edges generally hasten edge erosion in coastal marshes and that the erosion protection function of wetlands relates more to lateral than vertical edge-erosional processes and is positively correlated with the amount of belowground plant biomass lost. Collectively, our findings substantiate a coastal protection paradigm that incorporates preservation of shoreline vegetation, illuminate key context dependencies in this theory, and highlight local disturbances (e.g., oil spills) that kill wetland plants as agents that can accelerate coastal erosion.
Asunto(s)
Biomasa , Conservación de los Recursos Naturales , Plantas , Humedales , Florida , Poaceae/fisiologíaRESUMEN
We assessed recent changes in the distribution of soil total phosphorus (TP) in Water Conservation Area 3 (WCA-3) of the Everglades. Soil cores were collected in 1992 and 2003 at 176 sites. To reflect hydrologic boundaries within the system, WCA-3 was divided into three zones (3AN, 3AS, and 3B). Total P was mapped on both a mass (TPm) and a volumetric basis (TPv) to determine if spatial distributions varied depending on the choice of units. Interpolated maps for both years showed that the highest levels of TPm were located in 3AN and in boundary areas of all zones that received surface water inputs of P from canals. Increases in TPm were greatest in central 3AN in an area adjacent to the Miami Canal that received inputs from a water control structure. Interpolated maps for TPv illustrated that a hotspot present in 1992 had disappeared by 2003. The highest levels of TPv in 2003 were located in northwestern 3AN, a region of WCA-3 that has been chronically overdrained and burned in 1999. From 1992 to 2003, increases in TPm were observed for 53% of the area of WCA-3, while only 16% of WCA-3 exhibited increases in TPv. In 1992, approximately 21% of WCA-3 had TPm concentrations in the 0-10 cm layer >500 mg kg(-1), indicating P enrichment beyond historic levels. Eleven years later, 30% of the area of WCA-3 had TPm >500 mg kg(-1). This indicated that during this period, the area of WCA-3 with enriched TPm concentrations increased about one % year(-1).