Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Trends Genet ; 38(2): 124-127, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34627643

RESUMEN

Histone lactylation and acetylation compete for epigenetic modification of lysines and mark the levels of lactates and acetyl-CoA. Whether pyruvate is committed to lactate or acetyl-CoA generation as the outlet of glycolysis determines cell fate towards malignancy or not. Taking control over the glycolytic switch as marked by lactylation suggests novel therapeutic opportunities against cancers.


Asunto(s)
Glucólisis , Histonas , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetilación , Epigénesis Genética , Glucólisis/genética , Histonas/genética , Histonas/metabolismo
2.
Small ; 20(13): e2308767, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37949814

RESUMEN

Dual single-atom catalysts (DSACs) are promising for breaking the scaling relationships and ensuring synergistic effects compared with conventional single-atom catalysts (SACs). Nevertheless, precise synthesis and optimization of DSACs with specific locations and functions remain challenging. Herein, dual single-atoms are specifically incorporated into the layer-stacked bulk-like carbon nitride, featuring in-plane three-coordinated Pd and interplanar four-coordinated Cu (Pd1-Cu1/b-CN) atomic sites, from both experimental results and DFT simulations. Using femtosecond time-resolved transient absorption (fs-TA) spectroscopy, it is found that the in-plane Pd features a charge decay lifetime of 95.6 ps which is much longer than that of the interplanar Cu (3.07 ps). This finding indicates that the in-plane Pd can provide electrons for the reaction as the catalytically active site in both structurally and dynamically favorable manners. Such a well-defined bi-functional cascade system ensures a 3.47-fold increase in CO yield compared to that of bulk-like CN (b-CN), while also exceeding the effects of single Pd1/b-CN and Cu1/b-CN sites. Furthermore, DFT calculations reveal that the inherent transformation from s-p coupling to d-p hybridization between the Pd site and CO2 molecule occurs during the initial CO2 adsorption and hydrogenation processes and stimulates the preferred CO2-to-CO reaction pathway.

3.
Small ; : e2311302, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429242

RESUMEN

The release of nitrates into the environment leads to contaminated soil and water that poses a health risk to humans and animals. Due to the transition to renewable energy-based technologies, an electrochemical approach is an emerging option that can selectively produce valuable ammonia from nitrate sources. However, traditional metal-based electrocatalysts often suffer from low nitrate adsorption that reduces NH3  production rates. Here, a Ni-GaOOH-C/Ga electrocatalyst for electrochemical nitrate conversion into NH3 is synthesized via a low energy atmospheric-pressure plasma process that reduces CO2  into highly dispersed activated carbon on dispersed Ni─GaOOH particles produced from a liquid metal Ga─Ni alloy precursor. Nitrate conversion rates of up to 26.3 µg h-1  mg-1 cat  are achieved with good stability of up to 20 h. Critically, the presence of carbon centers is central to improved performance where both Ni─C and NiO─C interfaces act as NO3-  adsorption and reduction centers during the reaction. Density functional theory (DFT) calculations indicate that the NiO─C and Ni─C reaction sites reduce the Gibbs free energy required for NO3-  reduction to NH3  compared to NiO and Ni. Importantly, catalysts without carbon centers do not produce NH3 , emphasizing the unique effects of incorporating carbon nanoparticles into the electrocatalyst.

4.
Chem Rec ; 24(1): e202300161, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37582638

RESUMEN

Due to ever-increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3-D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N-doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g-1 , signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g-1 , highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N-doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo-capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high-performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.

5.
Environ Res ; 246: 118125, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199474

RESUMEN

The excessive and uncontrollable discharge of diverse organic pollutants into the environment has emerged as a significant concern, presenting a substantial risk to human health. Among the advanced oxidation processes used for the purification of wastewater, cold plasma technology is superior in fast and effective decontamination but often fails facing mixed pollutants. To address these issues, here we develop the new conceptual approach, plasma process, and proprietary reactor that ensure, for the first time, that the efficiency of treatment (114.7%) of two mixed organic dyes, methylene blue (MB) and methyl orange (MO), is higher than when the two dyes are treated separately. We further reveal the underlying mechanisms for the energy-efficient complete degradation of the mixed dyes. The contribution of plasma-induced ROS and the distinct degradation characteristics and mechanism of pollutants in mixed treatment are discussed. The electron transfer pathway revealed for the first time suggest that the mixed pollutants reduce the overall redox potentials and facilitate electron transfer during the plasma treatment, promoting synergistic degradation effects. The integrated frameworks including both direct and indirect mechanisms provide new insights into the high-efficiency mixed-contaminant treatment. The degradation products for mixed degradation are revealed based on the identification of intermediate species. The plasma-treated water is proven safe for living creatures in waterways and sustainable fishery applications, using in vivo zebrafish model bio-toxicity assay. Overall, these findings offer a feasible approach and new insights into the mechanisms for the development of highly-effective, energy-efficient technologies for wastewater treatment and reuse in agriculture, industry, and potentially in urban water networks.


Asunto(s)
Contaminantes Ambientales , Gases em Plasma , Contaminantes Químicos del Agua , Humanos , Animales , Aguas Residuales , Colorantes/análisis , Pez Cebra , Agua , Contaminantes Químicos del Agua/análisis
6.
Angew Chem Int Ed Engl ; 63(5): e202313599, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37891153

RESUMEN

Heterogeneous catalysts with targeted functionality can be designed with atomic precision, but it is challenging to retain the structure and performance upon the scaled-up manufacturing. Particularly challenging is to ensure the "atomic economy", where every catalytic site is most gainfully utilized. Given the emerging synergistic integration of human- and artificial intelligence (AI)-driven augmented designs (AD), augmented analytics (AA), and augmented reality manufacturing (AM) platforms, this minireview focuses on single-atom heterogeneous catalysts (SAHCs) and examines the current status, challenges, and future perspectives of translating atomic-level structural precision and data-driven discovery to next-generation industrial manufacturing. We critically examine the atomistic insights into structure-driven SAHCs functionality and discuss the opportunities and challenges on the way towards the synergistic human-AI collaborative data-driven platform capable of monitoring, analyzing, manufacturing, and retaining the atomic-scale structure and functions. Enhanced by the atomic-level AD, AA, and AM, evolving from the current high-throughput capabilities and digital materials manufacturing acceleration, this synergistic human-AI platform is promising to enable atom-efficient and atomically precise heterogeneous catalyst production.

7.
J Am Chem Soc ; 145(51): 28233-28239, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38103175

RESUMEN

By inducing CO2-pulsed discharges within microchannel bubbles and regulating thus-forming plasma microbubbles, we observe high-performance, catalyst-free coformation of hydrogen peroxide (H2O2) and oxalate directly from CO2 and water. With isotope-labeled C18O2 as the feedstock, peaks of H218O16O and H216O2 observed by ex situ surface-enhanced Raman spectra indicate that single-atom oxygen (O) from CO2 dissociations and H2O-derived OH radicals both contribute to H2O2 formation. The global plasma chemistry modeling suggests that high-density, energy-intense electron supply enables high-density CO2- (aq) and HCO2- (aq) formation and their subsequent coupling to produce oxalate. The enhanced solvation of CO2, facilitated by the efficient transport of CxOy ionic species and CO, is demonstrated as a crucial benefit of spark discharges interacting with water at the bubble interface. We expect this plasma microbubble approach to provide a novel power-to-chemical avenue to convert CO2 into valuable H2O2 and oxalic acid platform chemicals, thus leveraging renewable energy resources.

8.
Small ; 19(38): e2302727, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37222632

RESUMEN

High-efficiency and low-cost bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), as well as gel electrolytes with high thermal and mechanical adaptability are required for the development of flexible batteries. Herein, abundant Setaria Viridis (SV) biomass is selected as the precursor to prepare porous N-doped carbon tubes with high specific surface area and the 900 °C calcination product of SV (SV-900) shows the optimum ORR/OER activities with a small EOER -EORR of 0.734 V. Meanwhile, a new multifunctional gel electrolyte named C20E2G5 is prepared using cellulose extracted from another widely distributed biomass named flax as the skeleton, epichlorohydrin as the cross-linker and glycerol as the antifreezing agent. C20E2G5 possesses high ionic conductivity from -40 to + 60 °C, excellent tensile and compressive resistance, high adhesion, strong freezing and heat resistance. Moreover, the symmetrical cell assembled with C20E2G5 can significantly inhibit Zn dendrite growth. Finally, flexible solid-state Zn-air batteries assembled with SV-900 and C20E2G5 show high open circuit voltage, large energy density, and long-term operation stability between -40 and + 60 °C. This biomass-based approach is generic and can be used for the development of diverse next-generation electrochemical energy conversion and storage devices.

9.
Small ; : e2305383, 2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37661349

RESUMEN

2D transition metal carbides and nitrides (MXenes) are actively pursued as pseudocapacitive materials for supercapacitors owing to their advantages in electronic conductivity and surface reactivity. Increasing the fraction of ─O terminal groups in Ti3 C2 Tx is a promising approach to improve the pseudocapacitive charge storage in H2 SO4 electrolytes, but it suffers from a lack of effective functionalization methods and stability of the groups in practical operation. Here a low-temperature and environment-friendly approach via the interaction of nonequilibrium plasmas with Ti3 C2 Tx dispersion is demonstrated to generate abundant and stable surface-terminating O groups. The impact of the discharge environment (Ar, O2 , and H2 ) on the structural characteristics and electrochemical performance of Ti3 C2 Tx nanosheets is studied. The Ti3 C2 Tx modified in Ar and H2 maintains their original morphology but a significantly lower F content. Consequently, an extraordinarily high content (78.5%) of surface-terminating O groups is revealed by the high-resolution X-ray photoelectron spectroscopy spectra for the Ti3 C2 Tx samples modified in H2 plasma-treated solutions. Additionally, the Ti3 C2 Tx treated using H2 plasmas exhibits the best capacitive performance of 418.3 F g-1 at 2 mV s-1 , which can maintain 95.88% capacity after 10 000 cycles. These results contribute to the development of advanced nanostructured pseudocapacitive electrode materials for renewable energy storage applications.

10.
Small ; 19(20): e2206813, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36732883

RESUMEN

One of the major challenges on the way to low-cost, simple, and effective cancer treatments is the lack of smart anticancer drug delivery materials with the requisite of site-specific and microenvironment-responsive properties. This work reports the development of plasma-engineered smart drug nanocarriers (SDNCs) containing chitosan and nitrogen-doped graphene quantum dots (NGQDs) for drug delivery in a pH-responsive manner. Through a customized microplasma processing, a highly cross-linked SDNC with only 4.5% of NGQD ratio can exhibit enhanced toughness up to threefold higher than the control chitosan group, avoiding the commonly used high temperatures and toxic chemical cross-linking agents. The SDNCs demonstrate improved loading capability for doxorubicin (DOX) via π-π interactions and stable solid-state photoluminescence to monitor the DOX loading and release through the Förster resonance energy transfer (FRET) mechanism. Moreover, the DOX loaded SDNC exhibits anticancer effects against cancer cells during cytotoxicity tests at minimum concentration. Cellular uptake studies confirm that the DOX loaded SDNC can be successfully internalized into the nucleus after 12 h incubation period. This work provides new insights into the development of smart, environmental-friendly, and biocompatible nanographene hydrogels for the next-generation biomedical applications.


Asunto(s)
Antineoplásicos , Quitosano , Grafito , Puntos Cuánticos , Puntos Cuánticos/química , Grafito/química , Quitosano/química , Hidrogeles , Antineoplásicos/farmacología , Antineoplásicos/química , Doxorrubicina/farmacología , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Liberación de Fármacos , Portadores de Fármacos/química
11.
Faraday Discuss ; 243(0): 473-491, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37016973

RESUMEN

With the increase in the greenhouse effect and reduction of fossil fuel resources, it is urgent to find a feasible solution to directly convert power to chemicals using renewable energy and achieving zero carbon emissions targets. It is necessary to convert renewable energy (i.e., solar, wind, water, etc.) into electrical power replacing fossil-fuel-fired power. Therefore, the power-to-chemicals approach is gaining more and more attention. In the past two decades, non-thermal plasma, electro-catalysis, photo-catalysis, and their hybrid approaches have shown great potential for the power-to-chemicals solution. This paper introduces the application of plasma technology in energy conversion, focusing on three main routes for plasma-enabled ammonia synthesis, and analyses the state-of-the-art. Research results of ammonia synthesis based on plasma technology are discussed. The application of advanced in situ diagnostics evidences the importance of specific intermediate species and reaction pathways. Electrons, vibrationally-excited species, free radicals, and surface-adsorbed species play important roles in plasma-catalytic ammonia synthesis. Combined with experiments and simulations, the mechanisms of plasma-catalytic ammonia synthesis are examined. Vibrationally-excited species can effectively reduce the catalytic surface energy barrier. The techno-economics of the plasma-enabled ammonia synthesis technology is discussed in view of its competitive advantages. It is emphasized that the power-to-chemicals approach can be adapted for most chemical manufacturers, and these methods would play crucial roles in reducing carbon emissions and environmental pollution. Finally, suggestions are provided for the sustainable development of the power-to-chemicals industry in the future.

12.
Nanotechnology ; 34(50)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37748477

RESUMEN

Two-dimensional (2D) p-n heterojunctions have attracted great attention due to their outstanding properties in electronic and optoelectronic devices, especially in photodetectors. Various types of heterojunctions have been constituted by mechanical exfoliation and stacking. However, achieving controlled growth of heterojunction structures remains a tremendous challenge. Here, we employed a two-step KI-assisted confined-space chemical vapor deposition method to prepare multilayer WSe2/SnS2p-n heterojunctions. Optical characterization results revealed that the prepared WSe2/SnS2vertical heterostructures have clear interfaces as well as vertical heterostructures. The electrical and optoelectronic properties were investigated by constructing the corresponding heterojunction devices, which exhibited good rectification characteristics and obtained a high detectivity of 7.85 × 1012Jones and a photoresponse of 227.3 A W-1under visible light irradiation, as well as a fast rise/fall time of 166/440µs. These remarkable performances are likely attributed to the ultra-low dark current generated in the depletion region at the junction and the high direct tunneling current during illumination. This work demonstrates the value of multilayer WSe2/SnS2heterojunctions for applications in high-performance photodetectors.

13.
Small ; 18(16): e2200694, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35266638

RESUMEN

Anatase TiO2 is a promising anode material for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to its high specific capacity, low cost, and excellent cycle stability. However, low electrical conductivity and poor Na+ ion transport in TiO2 limit its practical applications. Here, substantially boosted Na+ ion transport and charge transfer kinetics are demonstrated by constructing a near-ideal non-rectifying titanium carbonitride/nitrogen-doped TiO2 (TiCx N1- x /N-TiO2 ) heterostructure. Owing to the fast plasma effects and metastable hybrid phases, the TiCx N1- x is epitaxially grown on TiO2 . Energy band engineering at the interface induces high electron densities and a strong built-in electric field, which lowers the Na+ diffusion barrier by a factor of 1.7. As a result, the TiCx N1- x /N-TiO2 electrode exhibits excellent electrochemical performance. The reversible specific capacities at rates of 0.1 and 10 C reach 312.3 and 173.7 mAh g-1 , respectively. After 600 cycles of charge and discharge at 10 C, the capacity retention rate is 98.7%. This work discovers an effective non-equilibrium plasma-enabled process to construct heterointerfaces that can enhance Na+ ion transport and provides generic guidelines for the design of heterostructures for a broader range of energy storage, separation, and other devices that rely on controlled ionic transport.

14.
Nanotechnology ; 34(10)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36562509

RESUMEN

Epitaxial graphene on SiC is the most promising substrate for the next generation 2D electronics, due to the possibility to fabricate 2D heterostructures directly on it, opening the door to the use of all technological processes developed for silicon electronics. To obtain a suitable material for large scale applications, it is essential to achieve perfect control of size, quality, growth rate and thickness. Here we show that this control on epitaxial graphene can be achieved by exploiting the face-to-face annealing of SiC in ultra-high vacuum. With this method, Si atoms trapped in the narrow space between two SiC wafers at high temperatures contribute to the reduction of the Si sublimation rate, allowing to achieve smooth and virtually defect free single graphene layers. We analyse the products obtained on both on-axis and off-axis 4H-SiC substrates in a wide range of temperatures (1300 °C-1500 °C), determining the growth law with the help of x-ray photoelectron spectroscopy (XPS). Our epitaxial graphene on SiC has terrace widths up to 10µm (on-axis) and 500 nm (off-axis) as demonstrated by atomic force microscopy and scanning tunnelling microscopy, while XPS and Raman spectroscopy confirm high purity and crystalline quality.

15.
Nanotechnology ; 33(22)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35172297

RESUMEN

Two-dimensional (2D) materials including black phosphorus (BP) have been extensively investigated because of their exotic physical properties and potential applications in nanoelectronics and optoelectronics. Fabricating BP based devices is challenging because BP is extremely sensitive to the external environment, especially to the chemical contamination during the lithography process. The direct evaporation through shadow mask technique is a clean method for lithography-free electrode patterning of 2D materials. Herein, we employ the lithography-free evaporation method for the construction of BP based field-effect transistors and photodetectors and systematically compare their performances with those of BP counterparts fabricated by conventional lithography and transfer electrode methods. The results show that BP devices fabricated by direct evaporation method possess higher mobility, faster response time, and smaller hysteresis than those prepared by the latter two methods. This can be attributed to the clean interface between BP and evaporated-electrodes as well as the lower Schottky barrier height of 20.2 meV, which is given by the temperature-dependent electrical results. Furthermore, the BP photodetectors exhibit a broad-spectrum response and polarization sensitivity. Our work elucidates a universal, low-cost and high-efficiency method to fabricate BP devices for optoelectronic applications.

16.
Phys Chem Chem Phys ; 24(35): 20674-20688, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36052687

RESUMEN

Aqueous electrolytes have attracted widespread attention as they are safe, environmentally benign and cost effective, holding great promise for future low-cost and sustainable energy storage devices. Nonetheless, the narrow electrochemical stability window caused by water electrolysis, as well as the trade-off between the stability window and other properties remain the bottleneck problem for the practical applications of aqueous electrolytes. Deep insights into the correlations between the microscopic physicochemical and electrochemical mechanisms and the macroscopic properties of aqueous electrolyte are essential for the envisaged applications, yet a systematic analysis of the recent progress in this area is still lacking. In this Perspective article, the basic mechanisms and influencing factors of water electrolysis including the hydrogen evolution and oxygen evolution reactions is critically examined. We systematically review the current state-of-the-art on high-voltage aqueous electrolytes focusing on the fundamental mechanisms of ion kinetics leading to dynamic electrolyte restructuring. Recent advances on the optimization of high-voltage aqueous electrolytes are also summarized. The existing challenges are identified and perspectives for exploring and developing future high-voltage aqueous electrolytes are provided.

17.
Prog Polym Sci ; 118: 101410, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33967350

RESUMEN

Coronavirus disease 2019 (COVID-19) is largely threatening global public health, social stability, and economy. Efforts of the scientific community are turning to this global crisis and should present future preventative measures. With recent trends in polymer science that use plasma to activate and enhance the functionalities of polymer surfaces by surface etching, surface grafting, coating and activation combined with recent advances in understanding polymer-virus interactions at the nanoscale, it is promising to employ advanced plasma processing for smart antiviral applications. This trend article highlights the innovative and emerging directions and approaches in plasma-based surface engineering to create antiviral polymers. After introducing the unique features of plasma processing of polymers, novel plasma strategies that can be applied to engineer polymers with antiviral properties are presented and critically evaluated. The challenges and future perspectives of exploiting the unique plasma-specific effects to engineer smart polymers with virus-capture, virus-detection, virus-repelling, and/or virus-inactivation functionalities for biomedical applications are analysed and discussed.

18.
Small ; 17(18): e2007312, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33733558

RESUMEN

The controllable large-area growth of single-crystal vertical heterostructures based on 2D transition metal dichalcogenides (TMDs) remains a challenge. Here, large-area vertical MoS2 /WS2 heterostructures are synthesized using single-step confined-space chemical vapor epitaxy. The heterostructures can evolve into two different kinds by switching the H2 flow on and off: MoS2 /WS2 heterostructures with multiple WS2 domains can be achieved without introducing the H2 flow due to the numerous nucleation centers on the bottom MoS2 monolayer during the transition stage between the MoS2 and WS2 monolayer growth. In contrast, isolated MoS2 /WS2 heterostructures with single WS2 domain can be obtained with introducing the H2 flow due to the reduced nucleation centers on the bottom MoS2 monolayer arising from the hydrogen etching effect. Both the two kinds of the vertical MoS2 /WS2 heterostructures feature high quality. The photodetectors based on the isolated MoS2 /WS2 heterostructures exhibit a high responsivity of 68 mA W-1 and a short response time of 35 ms. This single-step chemical vapor epitaxy can be used to synthesize vertical MoS2 /WS2 heterostructures with high production efficiency. The new epitaxial growth approach may open new pathways to fabricate large-area heterostructures made of different 2D TMDs monolayers of interest to electronics, optoelectronics, and other applications.

19.
Nanotechnology ; 33(6)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34649226

RESUMEN

In recent years, two-dimensional materials have received more and more attention in the development of semiconductor devices, and their practical applications in optoelectronic devices have also developed rapidly. However, there are still some factors that limit the performance of two-dimensional semiconductor material devices, and one of the most important is Ohmic contact. Here, we elaborate on a variety of approaches to achieve Ohmic contacts on two-dimensional materials and reveal their physical mechanisms. For the work function mismatch problem, we summarize the comparison of barrier heights between different metals and 2D semiconductors. We also examine different methods to solve the problem of Fermi level pinning. For the novel 2D metal-semiconductor contact methods, we analyse their effects on reducing contact resistance from two different perspectives: homojunction and heterojunction. Finally, the challenges of 2D semiconductors in achieving Ohmic contacts are outlined.

20.
Nanotechnology ; 32(2): 025201, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-32957095

RESUMEN

Some advances have been achieved in developing heterojunctions consisting of indium-gallium-zinc oxide (a-IGZO) films and two dimensional (2D) van der Waals materials for optoelectronic applications in recent years, however, the improvement of IGZO channel itself via constructing such heterojunctions is rarely reported. Here, we report the huge improvement in photoresponse performances for the IGZO phototransistor devices by introducing boron nitride (BN)/black phosphorus (BP) interface engineering. By creating an appropriate band bending and an efficient photo-generated carrier transfer path between IGZO and BP, the recombination of the photo-generated carriers in the IGZO channel is significantly suppressed. As a result, the corresponding photoresponsivity at a wavelength of 447 nm can be promoted from 0.05 A W-1 to 0.3 A W-1. A corresponding maximum external quantum efficiency of 83.4% was obtained for the BN/BP decorated IGZO phototransistor. The results imply that such interface engineering via 2D materials can be used as a general route to high performance oxide-semiconductor based optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA