Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(21): 216702, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856290

RESUMEN

The antiferromagnetic Weyl semimetal Mn_{3}Sn has attracted wide attention due to its vast anomalous transverse transport properties despite barely any net magnetization. So far, the magnetic properties of Mn_{3}Sn have been experimentally investigated on micrometer scale samples but not in nanometers. In this study, we measured the local anomalous Nernst effect of a (0001)-textured Mn_{3}Sn nanowire using a tip-contact-induced temperature gradient with an atomic force microscope. Our approach directly maps the distribution of the cluster magnetic octupole moments with 80 nm spatial resolution, providing crucial information for integrating the Mn_{3}Sn nanostructure into spintronic devices.

2.
Phys Rev Lett ; 132(5): 056704, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38364117

RESUMEN

Here, we report the observation of strong coupling between magnons and surface acoustic wave (SAW) phonons in a thin CoFeB film constructed in an on-chip SAW resonator by analyzing SAW phonon dispersion anticrossings. We employ a nanostructured SAW resonator design that, in contrast to conventional SAW resonators, allows us to enhance shear-horizontal strain. Crucially, this type of strain couples strongly to magnons. Our device design provides the tunability of the film thickness with a fixed phonon wavelength, which is a departure from the conventional approach in strong magnon-phonon coupling research. We detect a monotonic increase in the coupling strength by expanding the film thickness, which agrees with our theoretical model. Our work offers a significant way to advance fundamental research and the development of devices based on magnon-phonon hybrid quasiparticles.

3.
Sci Adv ; 10(28): eado2504, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38985868

RESUMEN

Surface acoustic wave (SAW) can carry phononic angular momentum, showing great potential as an energy-efficient way to control magnetism. Still, out-of-plane phononic angular momentum in SAW and its interaction with magnetism remain elusive. Here, we studied the SAW-induced magnetoacoustic waves and spin pumping in Ni-based films on LiNbO3 with selected SAW propagation direction. The crystal inversion asymmetry induces circularly polarized phonons with large out-of-plane angular momenta so that up to 60% of the SAW power attenuates nonreciprocally controlled by the out-of-plane magnetization component. The SAW propagation direction dependence of the nonreciprocity verifies the crystal origin of the phononic angular momentum, and a chiral spin pumping demonstrates that the circular polarization can control the spin current generation efficiency. These results provide an additional degree of freedom for the acoustic control of magnetism and open an avenue for applying circularly polarized phonons.

4.
Nat Commun ; 15(1): 4305, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862480

RESUMEN

Antiferromagnets (AFMs) have the natural advantages of terahertz spin dynamics and negligible stray fields, thus appealing for use in domain-wall applications. However, their insensitive magneto-electric responses make controlling them in domain-wall devices challenging. Recent research on noncollinear chiral AFMs Mn3X (X = Sn, Ge) enabled us to detect and manipulate their magnetic octupole domain states. Here, we demonstrate a current-driven fast magnetic octupole domain-wall (MODW) motion in Mn3X. The magneto-optical Kerr observation reveals the Néel-like MODW of Mn3Ge can be accelerated up to 750 m s-1 with a current density of only 7.56 × 1010 A m-2 without external magnetic fields. The MODWs show extremely high mobility with a small critical current density. We theoretically extend the spin-torque phenomenology for domain-wall dynamics from collinear to noncollinear magnetic systems. Our study opens a new route for antiferromagnetic domain-wall-based applications.

5.
J Phys Condens Matter ; 36(36)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38565125

RESUMEN

Magnonicsis a research field that has gained an increasing interest in both the fundamental and applied sciences in recent years. This field aims to explore and functionalize collective spin excitations in magnetically ordered materials for modern information technologies, sensing applications and advanced computational schemes. Spin waves, also known as magnons, carry spin angular momenta that allow for the transmission, storage and processing of information without moving charges. In integrated circuits, magnons enable on-chip data processing at ultrahigh frequencies without the Joule heating, which currently limits clock frequencies in conventional data processors to a few GHz. Recent developments in the field indicate that functional magnonic building blocks for in-memory computation, neural networks and Ising machines are within reach. At the same time, the miniaturization of magnonic circuits advances continuously as the synergy of materials science, electrical engineering and nanotechnology allows for novel on-chip excitation and detection schemes. Such circuits can already enable magnon wavelengths of 50 nm at microwave frequencies in a 5G frequency band. Research into non-charge-based technologies is urgently needed in view of the rapid growth of machine learning and artificial intelligence applications, which consume substantial energy when implemented on conventional data processing units. In its first part, the 2024 Magnonics Roadmap provides an update on the recent developments and achievements in the field of nano-magnonics while defining its future avenues and challenges. In its second part, the Roadmap addresses the rapidly growing research endeavors on hybrid structures and magnonics-enabled quantum engineering. We anticipate that these directions will continue to attract researchers to the field and, in addition to showcasing intriguing science, will enable unprecedented functionalities that enhance the efficiency of alternative information technologies and computational schemes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA