Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(12): 123902, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32281836

RESUMEN

Recent theories proposed a deep revision of the well-known expression for the Purcell factor, with counterintuitive effects, such as complex modal volumes and non-Lorentzian local density of states. We experimentally demonstrate these predictions in tailored coupled cavities on photonic crystal slabs with relatively low optical losses. Near-field hyperspectral imaging of quantum dot photoluminescence is proved to be a direct tool for measuring the line shape of the local density of states. The experimental results clearly evidence non-Lorentzian character, in perfect agreement with numerical and theoretical predictions. Spatial maps with deep subwavelength resolution of the real and imaginary parts of the complex mode volumes are presented. The generality of these results is confirmed by an additional set of far-field and time-resolved experiments in cavities with larger modal volume and higher quality factors.

2.
Ultramicroscopy ; 230: 113368, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34492425

RESUMEN

The low throughput of atomic force microscopy (AFM) is the main drawback in its large-scale deployment in industrial metrology. A promising solution would be based on the parallelization of the scanning probe system, allowing acquisition of the image by an array of probes operating simultaneously. A key step for reaching this goal relies on the miniaturization and integration of the sensing mechanism. Here, we demonstrate AFM imaging employing an on-chip displacement sensor, based on a photonic crystal cavity, combined with an integrated photodetector and coupled to an on-chip waveguide. This fully-integrated sensor allows high-sensitivity and high-resolution in a very small footprint and its readout is compatible with current commercial AFM systems.

3.
Adv Mater ; 31(12): e1807274, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30714221

RESUMEN

Random dielectrics defines a class of non-absorbing materials where the index of refraction is randomly arranged in space. Whenever the transport mean free path is sufficiently small, light can be confined in modes with very small volume. Random photonic modes have been investigated for their basic physical insights, such as Anderson localization, and recently several applications have been envisioned in the field of renewable energies, telecommunications, and quantum electrodynamics. An advantage for optoelectronics and quantum source integration offered by random systems is their high density of photonic modes, which span a large range of spectral resonances and spatial distributions, thus increasing the probability to match randomly distributed emitters. Conversely, the main disadvantage is the lack of deterministic engineering of one or more of the many random photonic modes achieved. This issue is solved by demonstrating the capability to electrically and mechanically control the random modes at telecom wavelengths in a 2D double membrane system. Very large and reversible mode tuning (up to 50 nm), both toward shorter or longer wavelength, is obtained for random modes with modal volumes of the order of few tens of (λ/n)3 .

4.
Nat Commun ; 8(1): 2216, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29263425

RESUMEN

Spectrometry is widely used for the characterization of materials, tissues, and gases, and the need for size and cost scaling is driving the development of mini and microspectrometers. While nanophotonic devices provide narrowband filtering that can be used for spectrometry, their practical application has been hampered by the difficulty of integrating tuning and read-out structures. Here, a nano-opto-electro-mechanical system is presented where the three functionalities of transduction, actuation, and detection are integrated, resulting in a high-resolution spectrometer with a micrometer-scale footprint. The system consists of an electromechanically tunable double-membrane photonic crystal cavity with an integrated quantum dot photodiode. Using this structure, we demonstrate a resonance modulation spectroscopy technique that provides subpicometer wavelength resolution. We show its application in the measurement of narrow gas absorption lines and in the interrogation of fiber Bragg gratings. We also explore its operation as displacement-to-photocurrent transducer, demonstrating optomechanical displacement sensing with integrated photocurrent read-out.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA