Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752499

RESUMEN

As sequencing genomes has become increasingly popular, the need for annotation of the resulting assemblies is growing. Structural and functional annotation is still challenging as it includes finding the correct gene sequences, annotating other elements such as RNA and being able to submit those data to databases to share it with the community. Compared to de novo assembly where contiguous chromosomes are a sign of high quality, it is difficult to visualize and assess the quality of annotation. We developed the Companion web server to allow non-experts to annotate their genome using a reference-based method, enabling them to assess the output before submitting to public databases. In this update paper, we describe how we have included novel methods for gene finding and made the Companion server more efficient for annotation of genomes of up to 1 Gb in size. The reference set was increased to include genomes of interest for human and animal health from the fungi and arthropod kingdoms. We show that Companion outperforms existing comparable tools where closely related references are available.

2.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37406192

RESUMEN

Recent advances in long read technologies not only enable large consortia to aim to sequence all eukaryotes on Earth, but they also allow individual laboratories to sequence their species of interest with relatively low investment. Long read technologies embody the promise of overcoming scaffolding problems associated with repeats and low complexity sequences, but the number of contigs often far exceeds the number of chromosomes and they may contain many insertion and deletion errors around homopolymer tracts. To overcome these issues, we have implemented the ILRA pipeline to correct long read-based assemblies. Contigs are first reordered, renamed, merged, circularized, or filtered if erroneous or contaminated. Illumina short reads are used subsequently to correct homopolymer errors. We successfully tested our approach by improving the genome sequences of Homo sapiens, Trypanosoma brucei, and Leptosphaeria spp., and by generating four novel Plasmodium falciparum assemblies from field samples. We found that correcting homopolymer tracts reduced the number of genes incorrectly annotated as pseudogenes, but an iterative approach seems to be required to correct more sequencing errors. In summary, we describe and benchmark the performance of our new tool, which improved the quality of novel long read assemblies up to 1 Gbp. The pipeline is available at GitHub: https://github.com/ThomasDOtto/ILRA.


Asunto(s)
Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN , Seudogenes , Cromosomas
3.
PLoS Pathog ; 19(6): e1011468, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37384799

RESUMEN

Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.


Asunto(s)
Culicidae , Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Culicidae/genética , Expresión Génica , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Parásitos/genética , Plasmodium falciparum/genética , Esporozoítos , Virulencia/genética
4.
Bioinformatics ; 39(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36864613

RESUMEN

SUMMARY: Annotation of nonmodel organisms is an open problem, especially the detection of untranslated regions (UTRs). Correct annotation of UTRs is crucial in transcriptomic analysis to accurately capture the expression of each gene yet is mostly overlooked in annotation pipelines. Here we present peaks2utr, an easy-to-use Python command line tool that uses the UTR enrichment of single-cell technologies, such as 10× Chromium, to accurately annotate 3' UTRs for a given canonical annotation. AVAILABILITY AND IMPLEMENTATION: peaks2utr is implemented in Python 3 (≥3.8). It is available via PyPI at https://pypi.org/project/peaks2utr and GitHub at https://github.com/haessar/peaks2utr. It is licensed under GNU GPLv3.


Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , Regiones no Traducidas 3'
5.
BJU Int ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923777

RESUMEN

OBJECTIVES: To compare Uromonitor® (U-Monitor Lda, Porto, Portugal), a multitarget DNA assay that detects mutated proto-oncogenes (telomerase reverse transcriptase [TERT], fibroblast growth factor receptor 3 [FGFR-3], Kirsten rat sarcoma viral oncogene homologue [KRAS]), with urine cytology in the urine-based diagnosis of urothelial carcinoma of the bladder (UCB) within a multicentre real-world setting. PATIENTS AND METHODS: This multicentre, prospective, double-blind study was conducted across four German urological centres from 2019 to 2024. We evaluated the diagnostic performance of Uromonitor compared to urine cytology in a cohort of patients with UCB and in healthy controls within a real-world setting. Sensitivity, specificity, positive-predictive value (PPV), negative-predictive value (NPV), and accuracy of the tests were measured, in addition to multivariate analyses to assess the ability of individual proto-oncogene mutations in detecting UCB. The biometric sample size was designed to achieve a 10% difference in sensitivity. RESULTS: Patients with UCB comprised 63.7% (339/532) of the study group. Uromonitor showed a sensitivity, specificity, PPV, NPV, accuracy, and an area-under-the-curve of 49.3%, 93.3%, 92.8%, 51.1%, 65.2%, and 0.713%, respectively. These metrics did not demonstrate statistical superiority over urine cytology in terms of sensitivity (44.6%; P = 0.316). Moreover, the comparison of additional test parameters, as well as the comparison within various sensitivity analyses, yielded no significant disparity between the two urinary tests. Multivariate logistic regression underscored the significant predictive value of a positive Uromonitor for detecting UCB (odds ratio [OR] 9.03; P < 0.001). Furthermore, mutations in TERT and FGFR-3 were independently associated with high odds of UCB detection (OR 13.30 and 7.04, respectively), while KRAS mutations did not exhibit predictive capability. CONCLUSION: Despite its innovative approach, Uromonitor fell short of confirming the superior results anticipated from previous studies in this real-world setting. The search for an optimal urine-based biomarker for detecting and monitoring UCB remains ongoing. Results from this study highlight the complexity of developing non-invasive diagnostic tools and emphasise the importance of continued research efforts to refine these technologies.

6.
Nature ; 563(7729): 121-125, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30333624

RESUMEN

Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses-Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing-that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.


Asunto(s)
Variación Antigénica/genética , Cromatina/genética , Cromatina/metabolismo , ADN Protozoario/metabolismo , Genoma/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/inmunología , ADN Protozoario/genética , Haplotipos/genética , Histonas/deficiencia , Histonas/genética , Familia de Multigenes/genética , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/biosíntesis , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
8.
Nature ; 560(7717): 192-197, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30046105

RESUMEN

Visceral leishmaniasis causes considerable mortality and morbidity in many parts of the world. There is an urgent need for the development of new, effective treatments for this disease. Here we describe the development of an anti-leishmanial drug-like chemical series based on a pyrazolopyrimidine scaffold. The leading compound from this series (7, DDD853651/GSK3186899) is efficacious in a mouse model of visceral leishmaniasis, has suitable physicochemical, pharmacokinetic and toxicological properties for further development, and has been declared a preclinical candidate. Detailed mode-of-action studies indicate that compounds from this series act principally by inhibiting the parasite cdc-2-related kinase 12 (CRK12), thus defining a druggable target for visceral leishmaniasis.


Asunto(s)
Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Leishmania donovani/efectos de los fármacos , Leishmania donovani/enzimología , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Terapia Molecular Dirigida , Pirazoles/farmacología , Pirimidinas/farmacología , Animales , Quinasa 9 Dependiente de la Ciclina/química , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Simulación del Acoplamiento Molecular , Proteoma/efectos de los fármacos , Proteómica , Pirazoles/química , Pirazoles/uso terapéutico , Pirimidinas/química , Pirimidinas/uso terapéutico , Reproducibilidad de los Resultados , Especificidad por Sustrato
9.
PLoS Comput Biol ; 18(4): e1009975, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35395014

RESUMEN

Cell-cell interactions are vital for numerous biological processes including development, differentiation, and response to inflammation. Currently, most methods for studying interactions on scRNA-seq level are based on curated databases of ligands and receptors. While those methods are useful, they are limited to our current biological knowledge. Recent advances in single cell protocols have allowed for physically interacting cells to be captured, and as such we have the potential to study interactions in a complemantary way without relying on prior knowledge. We introduce a new method based on Latent Dirichlet Allocation (LDA) for detecting genes that change as a result of interaction. We apply our method to synthetic datasets to demonstrate its ability to detect genes that change in an interacting population compared to a reference population. Next, we apply our approach to two datasets of physically interacting cells to identify the genes that change as a result of interaction, examples include adhesion and co-stimulatory molecules which confirm physical interaction between cells. For each dataset we produce a ranking of genes that are changing in subpopulations of the interacting cells. In addition to the genes discussed in the original publications, we highlight further candidates for interaction in the top 100 and 300 ranked genes. Lastly, we apply our method to a dataset generated by a standard droplet-based protocol not designed to capture interacting cells, and discuss its suitability for analysing interactions. We present a method that streamlines detection of interactions and does not require prior clustering and generation of synthetic reference profiles to detect changes in expression.


Asunto(s)
Fenómenos Fisiológicos Celulares , Análisis de la Célula Individual , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Secuenciación del Exoma
10.
Nature ; 542(7639): 101-104, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28117441

RESUMEN

Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri). These species are prevalent across most regions in which malaria is endemic and are often undetectable by light microscopy, rendering their study in human populations difficult. The exact evolutionary relationship of these species to the other human-infective species has been contested. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are now able to accurately place these species within the Plasmodium phylogeny. Sequencing of a P. malariae relative that infects chimpanzees reveals similar signatures of selection in the P. malariae lineage to another Plasmodium lineage shown to be capable of colonization of both human and chimpanzee hosts. Molecular dating suggests that these host adaptations occurred over similar evolutionary timescales. In addition to the core genome that is conserved between species, differences in gene content can be linked to their specific biology. The genome suggests that P. malariae expresses a family of heterodimeric proteins on its surface that have structural similarities to a protein crucial for invasion of red blood cells. The data presented here provide insight into the evolution of the Plasmodium genus as a whole.


Asunto(s)
Evolución Molecular , Genoma/genética , Malaria/parasitología , Plasmodium malariae/genética , Plasmodium ovale/genética , Animales , Eritrocitos/parasitología , Femenino , Genómica , Humanos , Pan troglodytes/parasitología , Filogenia
11.
Proc Natl Acad Sci U S A ; 117(36): 22367-22377, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848068

RESUMEN

The γδ T cells reside predominantly at barrier sites and play essential roles in immune protection against infection and cancer. Despite recent advances in the development of γδ T cell immunotherapy, our understanding of the basic biology of these cells, including how their numbers are regulated in vivo, remains poor. This is particularly true for tissue-resident γδ T cells. We have identified the ß2 family of integrins as regulators of γδ T cells. ß2-integrin-deficient mice displayed a striking increase in numbers of IL-17-producing Vγ6Vδ1+ γδ T cells in the lungs, uterus, and circulation. Thymic development of this population was normal. However, single-cell RNA sequencing revealed the enrichment of genes associated with T cell survival and proliferation specifically in ß2-integrin-deficient IL-17+ cells compared to their wild-type counterparts. Indeed, ß2-integrin-deficient Vγ6+ cells from the lungs showed reduced apoptosis ex vivo, suggesting that increased survival contributes to the accumulation of these cells in ß2-integrin-deficient tissues. Furthermore, our data revealed an unexpected role for ß2 integrins in promoting the thymic development of the IFNγ-producing CD27+ Vγ4+ γδ T cell subset. Together, our data reveal that ß2 integrins are important regulators of γδ T cell homeostasis, inhibiting the survival of IL-17-producing Vγ6Vδ1+ cells and promoting the thymic development of the IFNγ-producing Vγ4+ subset. Our study introduces unprecedented mechanisms of control for γδ T cell subsets.


Asunto(s)
Antígenos CD18 , Linfocitos Intraepiteliales , Timo , Animales , Antígenos CD18/genética , Antígenos CD18/inmunología , Antígenos CD18/metabolismo , Homeostasis/inmunología , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-17/metabolismo , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Linfocitos Intraepiteliales/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Timo/crecimiento & desarrollo , Timo/inmunología , Timo/metabolismo
12.
BMC Bioinformatics ; 23(1): 52, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073845

RESUMEN

BACKGROUND: Parasites use polymorphic gene families to evade the immune system or interact with the host. Assessing the diversity and expression of such gene families in pathogens can inform on the repertoire or host interaction phenotypes of clinical relevance. However, obtaining the sequences and quantifying their expression is a challenge. In Plasmodium falciparum, the highly polymorphic var genes encode the major virulence protein, PfEMP1, which bind a range of human receptors through varying combinations of DBL and CIDR domains. Here we present a tool, Varia, to predict near full-length gene sequences and domain compositions of query genes from database genes sharing short sequence tags. Varia generates output through two complementary pipelines. Varia_VIP returns all putative gene sequences and domain compositions of the query gene from any partial sequence provided, thereby enabling experimental validation of specific genes of interest and detailed assessment of their putative domain structure. Varia_GEM accommodates rapid profiling of var gene expression in complex patient samples from DBLα expression sequence tags (EST), by computing a sample overall transcript profile stratified by PfEMP1 domain types. RESULTS: Varia_VIP was tested querying sequence tags from all DBL domain types using different search criteria. On average 92% of query tags had one or more 99% identical database hits, resulting in the full-length query gene sequence being identified (> 99% identical DNA > 80% of query gene) among the five most prominent database hits, for ~ 33% of the query genes. Optimized Varia_GEM settings allowed correct prediction of > 90% of domains placed among the four most N-terminal domains, including the DBLα domain, and > 70% of C-terminal domains. With this accuracy, N-terminal domains could be predicted for > 80% of queries, whereas prediction rates of C-terminal domains dropped with the distance from the DBLα from 70 to 40%. CONCLUSION: Prediction of var sequence and domain composition is possible from short sequence tags. Varia can be used to guide experimental validation of PfEMP1 sequences of interest and conduct high-throughput analysis of var type expression in patient samples.


Asunto(s)
Malaria Falciparum , Proteínas Protozoarias , Humanos , Plasmodium falciparum/genética
13.
BJU Int ; 130(6): 754-763, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34928524

RESUMEN

OBJECTIVES: To evaluate the clinical utility of the urinary bladder cancer antigen test UBC® Rapid for the diagnosis of bladder cancer (BC) and to develop and validate nomograms to identify patients at high risk of primary BC. PATIENTS AND METHODS: Data from 1787 patients from 13 participating centres, who were tested between 2012 and 2020, including 763 patients with BC, were analysed. Urine samples were analysed with the UBC® Rapid test. The nomograms were developed using data from 320 patients and externally validated using data from 274 patients. The diagnostic accuracy of the UBC® Rapid test was evaluated using receiver-operating characteristic curve analysis. Brier scores and calibration curves were chosen for the validation. Biopsy-proven BC was predicted using multivariate logistic regression. RESULTS: The sensitivity, specificity, and area under the curve for the UBC® Rapid test were 46.4%, 75.5% and 0.61 (95% confidence interval [CI] 0.58-0.64) for low-grade (LG) BC, and 70.5%, 75.5% and 0.73 (95% CI 0.70-0.76) for high-grade (HG) BC, respectively. Age, UBC® Rapid test results, smoking status and haematuria were identified as independent predictors of primary BC. After external validation, nomograms based on these predictors resulted in areas under the curve of 0.79 (95% CI 0.72-0.87) and 0.95 (95% CI: 0.92-0.98) for predicting LG-BC and HG-BC, respectively, showing excellent calibration associated with a higher net benefit than the UBC® Rapid test alone for low and medium risk levels in decision curve analysis. The R Shiny app allows the results to be explored interactively and can be accessed at www.blucab-index.net. CONCLUSION: The UBC® Rapid test alone has limited clinical utility for predicting the presence of BC. However, its combined use with BC risk factors including age, smoking status and haematuria provides a fast, highly accurate and non-invasive tool for screening patients for primary LG-BC and especially primary HG-BC.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/orina , Nomogramas , Hematuria , Curva ROC , Factores de Riesgo
14.
PLoS Genet ; 15(11): e1008452, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31710597

RESUMEN

Trypanosomatid parasites are causative agents of important human and animal diseases such as sleeping sickness and leishmaniasis. Most trypanosomatids are transmitted to their mammalian hosts by insects, often belonging to Diptera (or true flies). These are called dixenous trypanosomatids since they infect two different hosts, in contrast to those that infect just insects (monoxenous). However, it is still unclear whether dixenous and monoxenous trypanosomatids interact similarly with their insect host, as fly-monoxenous trypanosomatid interaction systems are rarely reported and under-studied-despite being common in nature. Here we present the genome of monoxenous trypanosomatid Herpetomonas muscarum and discuss its transcriptome during in vitro culture and during infection of its natural insect host Drosophila melanogaster. The H. muscarum genome is broadly syntenic with that of human parasite Leishmania major. We also found strong similarities between the H. muscarum transcriptome during fruit fly infection, and those of Leishmania during sand fly infections. Overall this suggests Drosophila-Herpetomonas is a suitable model for less accessible insect-trypanosomatid host-parasite systems such as sand fly-Leishmania.


Asunto(s)
Interacciones Huésped-Parásitos/genética , Leishmania/genética , Psychodidae/parasitología , Trypanosomatina/genética , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/parasitología , Infecciones por Euglenozoos/genética , Infecciones por Euglenozoos/parasitología , Infecciones por Euglenozoos/transmisión , Humanos , Insectos Vectores/genética , Leishmania/patogenicidad , Leishmaniasis/genética , Leishmaniasis/parasitología , Leishmaniasis/transmisión , Psychodidae/genética , Trypanosomatina/patogenicidad
15.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628431

RESUMEN

After the successful publication of three Special Issues devoted to highlighting novel scientific research results in the field of bladder cancer and their clinical implications, we are now directing our efforts towards a fourth edition which will aim at compiling innovative research strategies that will ultimately guide and support clinicians in the decision-making process for targeted bladder cancer therapies [...].


Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Patología Molecular , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética
16.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35887247

RESUMEN

Patients with muscle-invasive urothelial carcinoma achieving pathological complete response (pCR) upon neoadjuvant chemotherapy (NAC) have improved prognosis. Molecular subtypes of bladder cancer differ markedly regarding sensitivity to cisplatin-based chemotherapy and harbor FGFR treatment targets to various content. The objective of the present study was to evaluate whether preoperative assessment of molecular subtype as well as FGFR target gene expression is predictive for therapeutic outcome­rate of ypT0 status­to justify subsequent prospective validation within the "BladderBRIDGister". Formalin-fixed paraffin-embedded (FFPE) tissue specimens from transurethral bladder tumor resections (TUR) prior to neoadjuvant chemotherapy and corresponding radical cystectomy samples after chemotherapy of 36 patients were retrospectively collected. RNA from FFPE tissues were extracted by commercial kits, Relative gene expression of subtyping markers (e.g., KRT5, KRT20) and target genes (FGFR1, FGFR3) was analyzed by standardized RT-qPCR systems (STRATIFYER Molecular Pathology GmbH, Cologne). Spearman correlation, Kruskal−Wallis, Mann−Whitney and sensitivity/specificity tests were performed by JMP 9.0.0 (SAS software). The neoadjuvant cohort consisted of 36 patients (median age: 69, male 83% vs. female 17%) with 92% of patients being node-negative during radical cystectomy after 1 to 4 cycles of NAC. When comparing pretreatment with post-treatment samples, the median expression of KRT20 dropped most significantly from DCT 37.38 to 30.65, which compares with a 128-fold decrease. The reduction in gene expression was modest for other luminal marker genes (GATA3 6.8-fold, ERBB2 6.3-fold). In contrast, FGFR1 mRNA expression increased from 33.28 to 35.88 (~6.8-fold increase). Spearman correlation revealed positive association of pretreatment KRT20 mRNA levels with achieving pCR (r = 0.3072: p = 0.0684), whereas pretreatment FGFR1 mRNA was associated with resistance to chemotherapy (r = −0.6418: p < 0.0001). Hierarchical clustering identified luminal tumors of high KRT20 mRNA expression being associated with high pCR rate (10/16; 63%), while the double-negative subgroup with high FGFR1 expression did not respond with pCR (0/9; 0%). Molecular subtyping distinguishes patients with high probability of response from tumors as resistant to neoadjuvant chemotherapy. Targeting FGFR1 in less-differentiated bladder cancer subgroups may sensitize tumors for adopted treatments or subsequent chemotherapy.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Anciano , Carcinoma de Células Transicionales/tratamiento farmacológico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Femenino , Humanos , Masculino , Músculos/metabolismo , Terapia Neoadyuvante/efectos adversos , Invasividad Neoplásica , ARN Mensajero , Estudios Retrospectivos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
17.
J Radiol Prot ; 42(1)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33157546

RESUMEN

The International Commission on Radiation Units and Measurements (ICRU) has recently proposed a set of new operational quantities for radiation protection. ICRU supplied conversion coefficients for mono-energetic photons but not for photon reference radiation qualities defined by the International Organization for Standardization (ISO) in ISO 4037 and by the International Electrotechnical Commission (IEC) in IEC 61267. Therefore, in this work, conversion coefficients from total air kerma to the newly proposed operational quantities are averaged for photon reference radiation qualities. Also, parameters necessary to determine the influence of the air density on the conversion coefficients are determined. Finally, the impact of the newly proposed quantities upon the response of dosemeters is investigated.


Asunto(s)
Protección Radiológica , Fotones , Dosis de Radiación , Radiometría
18.
Immunology ; 162(1): 68-83, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931017

RESUMEN

Memory T cells respond rapidly in part because they are less reliant on a heightened levels of costimulatory molecules. This enables rapid control of secondary infecting pathogens but presents challenges to efforts to control or silence memory CD4 T cells, for example in antigen-specific tolerance strategies for autoimmunity. We have examined the transcriptional and functional consequences of reactivating memory CD4 T cells in the absence of an adjuvant. We find that memory CD4 T cells generated by infection or immunisation survive secondary activation with antigen delivered without adjuvant, regardless of their location in secondary lymphoid organs or peripheral tissues. These cells were, however, functionally altered following a tertiary immunisation with antigen and adjuvant, proliferating poorly but maintaining their ability to produce inflammatory cytokines. Transcriptional and cell cycle analysis of these memory CD4 T cells suggests they are unable to commit fully to cell division potentially because of low expression of DNA repair enzymes. In contrast, these memory CD4 T cells could proliferate following tertiary reactivation by viral re-infection. These data indicate that antigen-specific tolerogenic strategies must examine multiple parameters of Tcell function, and provide insight into the molecular mechanisms that may lead to deletional tolerance of memory CD4 T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Tolerancia Inmunológica/inmunología , Memoria Inmunológica/inmunología , Animales , Antígenos/inmunología , Autoinmunidad/inmunología , Ciclo Celular/inmunología , Proliferación Celular/fisiología , Citocinas/inmunología , Reparación del ADN/inmunología , Femenino , Inflamación/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Transcripción Genética/inmunología
19.
Genome Res ; 28(4): 547-560, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29500236

RESUMEN

Avian malaria parasites are prevalent around the world and infect a wide diversity of bird species. Here, we report the sequencing and analysis of high-quality draft genome sequences for two avian malaria species, Plasmodium relictum and Plasmodium gallinaceum We identify 50 genes that are specific to avian malaria, located in an otherwise conserved core of the genome that shares gene synteny with all other sequenced malaria genomes. Phylogenetic analysis suggests that the avian malaria species form an outgroup to the mammalian Plasmodium species, and using amino acid divergence between species, we estimate the avian- and mammalian-infective lineages diverged in the order of 10 million years ago. Consistent with their phylogenetic position, we identify orthologs of genes that had previously appeared to be restricted to the clades of parasites containing Plasmodium falciparum and Plasmodium vivax, the species with the greatest impact on human health. From these orthologs, we explore differential diversifying selection across the genus and show that the avian lineage is remarkable in the extent to which invasion-related genes are evolving. The subtelomeres of the P. relictum and P. gallinaceum genomes contain several novel gene families, including an expanded surf multigene family. We also identify an expansion of reticulocyte binding protein homologs in P. relictum, and within these proteins, we detect distinct regions that are specific to nonhuman primate, humans, rodent, and avian hosts. For the first time in the Plasmodium lineage, we find evidence of transposable elements, including several hundred fragments of LTR-retrotransposons in both species and an apparently complete LTR-retrotransposon in the genome of P. gallinaceum.


Asunto(s)
Malaria Aviar/genética , Plasmodium falciparum/genética , Plasmodium vivax/genética , Plasmodium/genética , Animales , Aves/parasitología , Evolución Molecular , Humanos , Malaria Aviar/parasitología , Mamíferos/parasitología , Filogenia , Plasmodium/patogenicidad , Plasmodium falciparum/patogenicidad , Plasmodium vivax/patogenicidad
20.
Chemistry ; 27(4): 1356-1363, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-32881100

RESUMEN

A combination of soft lithographic printing and soft templating has been used to fabricate high-resolution interdigitated micro-supercapacitors (MSC). Surfactant-assisted self-assembly produces high surface area ordered mesoporous carbons (490 m2 g-1 ). For the first time, such precursors have been printed by nano-imprint lithography as microdevices with a line width of only 250 nm and a spacing of only 1 µm. The devices are crack-free with low specific resistance (1.2×10-5  Ωm) and show good device capacitance up to 0.21 F cm-3 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA