Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(5): 906-922, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36787743

RESUMEN

ACE2 is the indispensable entry receptor for SARS-CoV and SARS-CoV-2. Because of the COVID-19 pandemic, it has become one of the most therapeutically targeted human molecules in biomedicine. ACE2 serves two fundamental physiological roles: as an enzyme, it alters peptide cascade balance; as a chaperone, it controls intestinal amino acid uptake. ACE2's tissue distribution, affected by co-morbidities and sex, explains the broad tropism of coronaviruses and the clinical manifestations of SARS and COVID-19. ACE2-based therapeutics provide a universal strategy to prevent and treat SARS-CoV-2 infections, applicable to all SARS-CoV-2 variants and other emerging zoonotic coronaviruses exploiting ACE2 as their cellular receptor.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2 , Peptidil-Dipeptidasa A/metabolismo , Pandemias
2.
Nature ; 588(7838): 466-472, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32971526

RESUMEN

Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and therapeutic strategies require a deeper understanding of the molecular processes involved in the healthy heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavour. Here, using state-of-the-art analyses of large-scale single-cell and single-nucleus transcriptomes, we characterize six anatomical adult heart regions. Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, and reveal distinct atrial and ventricular subsets of cells with diverse developmental origins and specialized properties. We define the complexity of the cardiac vasculature and its changes along the arterio-venous axis. In the immune compartment, we identify cardiac-resident macrophages with inflammatory and protective transcriptional signatures. Furthermore, analyses of cell-to-cell interactions highlight different networks of macrophages, fibroblasts and cardiomyocytes between atria and ventricles that are distinct from those of skeletal muscle. Our human cardiac cell atlas improves our understanding of the human heart and provides a valuable reference for future studies.


Asunto(s)
Miocardio/citología , Análisis de la Célula Individual , Transcriptoma , Adipocitos/clasificación , Adipocitos/metabolismo , Adulto , Enzima Convertidora de Angiotensina 2/análisis , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Células Epiteliales/clasificación , Células Epiteliales/metabolismo , Epitelio , Femenino , Fibroblastos/clasificación , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Atrios Cardíacos/anatomía & histología , Atrios Cardíacos/citología , Atrios Cardíacos/inervación , Ventrículos Cardíacos/anatomía & histología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/inervación , Homeostasis/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Miocitos Cardíacos/clasificación , Miocitos Cardíacos/metabolismo , Neuronas/clasificación , Neuronas/metabolismo , Pericitos/clasificación , Pericitos/metabolismo , Receptores de Coronavirus/análisis , Receptores de Coronavirus/genética , Receptores de Coronavirus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Células del Estroma/clasificación , Células del Estroma/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(19): e2212118120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126683

RESUMEN

The prognosis and treatment outcomes of heart failure (HF) patients rely heavily on disease etiology, yet the majority of underlying signaling mechanisms are complex and not fully elucidated. Phosphorylation is a major point of protein regulation with rapid and profound effects on the function and activity of protein networks. Currently, there is a lack of comprehensive proteomic and phosphoproteomic studies examining cardiac tissue from HF patients with either dilated dilated cardiomyopathy (DCM) or ischemic cardiomyopathy (ICM). Here, we used a combined proteomic and phosphoproteomic approach to identify and quantify more than 5,000 total proteins with greater than 13,000 corresponding phosphorylation sites across explanted left ventricle (LV) tissue samples, including HF patients with DCM vs. nonfailing controls (NFC), and left ventricular infarct vs. noninfarct, and periinfarct vs. noninfarct regions of HF patients with ICM. Each pair-wise comparison revealed unique global proteomic and phosphoproteomic profiles with both shared and etiology-specific perturbations. With this approach, we identified a DCM-associated hyperphosphorylation cluster in the cardiomyocyte intercalated disc (ICD) protein, αT-catenin (CTNNA3). We demonstrate using both ex vivo isolated cardiomyocytes and in vivo using an AAV9-mediated overexpression mouse model, that CTNNA3 phosphorylation at these residues plays a key role in maintaining protein localization at the cardiomyocyte ICD to regulate conductance and cell-cell adhesion. Collectively, this integrative proteomic/phosphoproteomic approach identifies region- and etiology-associated signaling pathways in human HF and describes a role for CTNNA3 phosphorylation in the pathophysiology of DCM.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Animales , Ratones , Humanos , Cardiomiopatía Dilatada/metabolismo , Ventrículos Cardíacos/metabolismo , Fosforilación , Proteómica , Miocardio/metabolismo , Insuficiencia Cardíaca/metabolismo , alfa Catenina/metabolismo
4.
Circ Res ; 132(1): e1-e21, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36448480

RESUMEN

BACKGROUND: We examined components of systemic and intestinal renin-angiotensin system on gut barrier permeability, glucose homeostasis, systemic inflammation, and progression of diabetic retinopathy (DR) in human subjects and mice with type 1 diabetes (T1D). METHODS: T1D individual with (n=18) and without (n=20) DR and controls (n=34) were examined for changes in gut-regulated components of the immune system, gut leakage markers (FABP2 [fatty acid binding protein 2] and peptidoglycan), and Ang II (angiotensin II); Akita mice were orally administered a Lactobacillus paracasei (LP) probiotic expressing humanized ACE2 (angiotensin-converting enzyme 2) protein (LP-ACE2) as either a prevention or an intervention. Akita mice with genetic overexpression of humanAce2 by small intestine epithelial cells (Vil-Cre.hAce2KI-Akita) were similarly examined. After 9 months of T1D, circulatory, enteral, and ocular end points were assessed. RESULTS: T1D subjects exhibit elevations in gut-derived circulating immune cells (ILC1 cells) and higher gut leakage markers, which were positively correlated with plasma Ang II and DR severity. The LP-ACE2 prevention cohort and genetic overexpression of intestinal ACE2 preserved barrier integrity, reduced inflammatory response, improved hyperglycemia, and delayed development of DR. Improvements in glucose homeostasis were due to intestinal MasR activation, resulting in a GSK-3ß (glycogen synthase kinase-3 beta)/c-Myc (cellular myelocytomatosis oncogene)-mediated decrease in intestinal glucose transporter expression. In the LP-ACE2 intervention cohort, gut barrier integrity was improved and DR reversed, but no improvement in hyperglycemia was observed. These data support that the beneficial effects of LP-ACE2 on DR are due to the action of ACE2, not improved glucose homeostasis. CONCLUSIONS: Dysregulated systemic and intestinal renin-angiotensin system was associated with worsening gut barrier permeability, gut-derived immune cell activation, systemic inflammation, and progression of DR in human subjects. In Akita mice, maintaining intestinal ACE2 expression prevented and reversed DR, emphasizing the multifaceted role of the intestinal renin-angiotensin system in diabetes and DR.


Asunto(s)
Diabetes Mellitus Tipo 1 , Retinopatía Diabética , Hiperglucemia , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Retinopatía Diabética/prevención & control , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hiperglucemia/complicaciones , Inflamación/metabolismo , Intestino Delgado , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/genética , Sistema Renina-Angiotensina/fisiología
5.
Am Heart J ; 274: 11-22, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38670300

RESUMEN

BACKGROUND: Sodium-glucose cotransporter-2 (SGLT2) inhibitors are effective in adults with diabetes mellitus (DM) and heart failure (HF) based on randomized clinical trials. We compared SGLT2 inhibitor uptake and outcomes in two cohorts: a population-based cohort of all adults with DM and HF in Alberta, Canada and a specialized heart function clinic (HFC) cohort. METHODS: The population-based cohort was derived from linked provincial healthcare datasets. The specialized clinic cohort was created by chart review of consecutive patients prospectively enrolled in the HFC between February 2018 and August 2022. We examined the association between SGLT2 inhibitor use (modeled as a time-varying covariate) and all-cause mortality or deaths/cardiovascular hospitalizations. RESULTS: Of the 4,885 individuals from the population-based cohort, 64.2% met the eligibility criteria of the trials proving the effectiveness of SGLT2 inhibitors. Utilization of SGLT2 inhibitors increased from 1.2% in 2017 to 26.4% by January 2022. In comparison, of the 530 patients followed in the HFC, SGLT2 inhibitor use increased from 9.8% in 2019 to 49.1 % by March 2022. SGLT2 inhibitor use in the population-based cohort was associated with fewer all-cause mortality (aHR 0.51, 95%CI 0.41-0.63) and deaths/cardiovascular hospitalizations (aHR 0.65, 95%CI 0.54-0.77). However, SGLT2 inhibitor usage rates were far lower in HF patients without DM (3.5% by March 2022 in the HFC cohort). CONCLUSIONS: Despite robust randomized trial evidence of clinical benefit, the uptake of SGLT2 inhibitors in patients with HF and DM remains low, even in the specialized HFC. Clinical care strategies are needed to enhance the use of SGLT2 inhibitors and improve implementation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/mortalidad , Masculino , Femenino , Anciano , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Hospitalización/estadística & datos numéricos , Alberta/epidemiología , Estudios de Cohortes , Causas de Muerte/tendencias
6.
J Pharmacol Exp Ther ; 388(1): 145-155, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37977817

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a major health problem with limited treatment options. Although optimizing cardiac energy metabolism is a potential approach to treating heart failure, it is poorly understood what alterations in cardiac energy metabolism actually occur in HFpEF. To determine this, we used mice in which HFpEF was induced using an obesity and hypertension HFpEF protocol for 10 weeks. Next, carvedilol, a third-generation ß-blocker and a biased agonist that exhibits agonist-like effects through ß arrestins by activating extracellular signal-regulated kinase, was used to decrease one of these parameters, namely hypertension. Heart function was evaluated by invasive pressure-volume loops and echocardiography as well as by ex vivo working heart perfusions. Glycolysis and oxidation rates of glucose, fatty acids, and ketones were measured in the isolated working hearts. The development of HFpEF was associated with a dramatic decrease in cardiac glucose oxidation rates, with a parallel increase in palmitate oxidation rates. Carvedilol treatment decreased the development of HFpEF but had no major effect on cardiac energy substrate metabolism. Carvedilol treatment did increase the expression of cardiac ß arrestin 2 and proteins involved in mitochondrial biogenesis. Decreasing bodyweight in obese HFpEF mice increased glucose oxidation and improved heart function. This suggests that the dramatic energy metabolic changes in HFpEF mice hearts are primarily due to the obesity component of the HFpEF model. SIGNIFICANCE STATEMENT: Metabolic inflexibility occurs in heart failure with preserved ejection fraction (HFpEF) mice hearts. Lowering blood pressure improves heart function in HFpEF mice with no major effect on energy metabolism. Between hypertension and obesity, the latter appears to have the major role in HFpEF cardiac energetic changes. Carvedilol increases mitochondrial biogenesis and overall energy expenditure in HFpEF hearts.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Ratones , Animales , Volumen Sistólico , Miocardio/metabolismo , Carvedilol/farmacología , Carvedilol/metabolismo , Metabolismo Energético , Obesidad/complicaciones , Obesidad/metabolismo , Hipertensión/metabolismo , Glucosa/metabolismo
7.
Basic Res Cardiol ; 119(1): 133-150, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38148348

RESUMEN

Heart failure is a prevalent disease worldwide. While it is well accepted that heart failure involves changes in myocardial energetics, what alterations that occur in fatty acid oxidation and glucose oxidation in the failing heart remains controversial. The goal of the study are to define the energy metabolic profile in heart failure induced by obesity and hypertension in aged female mice, and to attempt to lessen the severity of heart failure by stimulating myocardial glucose oxidation. 13-Month-old C57BL/6 female mice were subjected to 10 weeks of a 60% high-fat diet (HFD) with 0.5 g/L of Nω-nitro-L-arginine methyl ester (L-NAME) administered via drinking water to induce obesity and hypertension. Isolated working hearts were perfused with radiolabeled energy substrates to directly measure rates of myocardial glucose oxidation and fatty acid oxidation. Additionally, a series of mice subjected to the obesity and hypertension protocol were treated with a pyruvate dehydrogenase kinase inhibitor (PDKi) to stimulate cardiac glucose oxidation. Aged female mice subjected to the obesity and hypertension protocol had increased body weight, glucose intolerance, elevated blood pressure, cardiac hypertrophy, systolic dysfunction, and decreased survival. While fatty acid oxidation rates were not altered in the failing hearts, insulin-stimulated glucose oxidation rates were markedly impaired. PDKi treatment increased cardiac glucose oxidation in heart failure mice, which was accompanied with improved systolic function and decreased cardiac hypertrophy. The primary energy metabolic change in heart failure induced by obesity and hypertension in aged female mice is a dramatic decrease in glucose oxidation. Stimulating glucose oxidation can lessen the severity of heart failure and exert overall functional benefits.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Femenino , Animales , Ratones , Glucosa/metabolismo , Ratones Endogámicos C57BL , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Oxidación-Reducción , Cardiomegalia/metabolismo , Hipertensión/complicaciones , Obesidad/complicaciones , Ácidos Grasos/metabolismo , Metabolismo Energético
8.
Am J Transplant ; 23(2): 202-213, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36804130

RESUMEN

Heart transplant and recipient survival are limited by immune cell-mediated injury of the graft vasculature. We examined the role of the phosphoinositide 3-kinase-ß (PI3Kß) isoform in endothelial cells (EC) during coronary vascular immune injury and repair in mice. In minor histocompatibility-antigen mismatched allogeneic heart grafts, a robust immune response was mounted to each wild-type, PI3Kß inhibitor-treated, or endothelial-selective PI3Kß knockout (ECßKO) graft transplanted to wild-type recipients. However, microvascular EC loss and progressive occlusive vasculopathy only developed in control, but not PI3Kß-inactivated hearts. We observed a delay in inflammatory cell infiltration of the ECßKO grafts, particularly in the coronary arteries. Surprisingly, this was accompanied by an impaired display of proinflammatory chemokine and adhesion molecules by the ECßKO ECs. In vitro, tumor necrosis factor α-stimulated endothelial ICAM1 and VCAM1 expression was blocked by PI3Kß inhibition or RNA interference. Selective PI3Kß inhibition also blocked tumor necrosis factor α-stimulated degradation of inhibitor of nuclear factor kappa Bα and nuclear translocation of nuclear factor kappa B p65 in EC. These data identify PI3Kß as a therapeutic target to reduce vascular inflammation and injury.


Asunto(s)
Células Endoteliales , Lesiones del Sistema Vascular , Ratones , Animales , Células Endoteliales/patología , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Lesiones del Sistema Vascular/patología , Factor de Necrosis Tumoral alfa
9.
FASEB J ; 36(10): e22560, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36165236

RESUMEN

Angiogenesis inhibitor drugs targeting vascular endothelial growth factor (VEGF) signaling to the endothelial cell (EC) are used to treat various cancer types. However, primary or secondary resistance to therapy is common. Clinical and pre-clinical studies suggest that alternative pro-angiogenic factors are upregulated after VEGF pathway inhibition. Therefore, identification of alternative pro-angiogenic pathway(s) is critical for the development of more effective anti-angiogenic therapy. Here we study the role of apelin as a pro-angiogenic G-protein-coupled receptor ligand in tumor growth and angiogenesis. We found that loss of apelin in mice delayed the primary tumor growth of Lewis lung carcinoma 1 and B16F10 melanoma when combined with the VEGF receptor tyrosine kinase inhibitor, sunitinib. Targeting apelin in combination with sunitinib markedly reduced the tumor vessel density, and decreased microvessel remodeling. Apelin loss reduced angiogenic sprouting and tip cell marker gene expression in comparison to the sunitinib-alone-treated mice. Single-cell RNA sequencing of tumor EC demonstrated that the loss of apelin prevented EC tip cell differentiation. Thus, apelin is a potent pro-angiogenic cue that supports initiation of tumor neovascularization. Together, our data suggest that targeting apelin may be useful as adjuvant therapy in combination with VEGF signaling inhibition to inhibit the growth of advanced tumors.


Asunto(s)
Neoplasias Experimentales , Neoplasias , Inhibidores de la Angiogénesis/farmacología , Animales , Apelina , Ligandos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias Experimentales/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Receptores Acoplados a Proteínas G/fisiología , Receptores de Factores de Crecimiento Endotelial Vascular , Sunitinib/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/uso terapéutico
10.
Eur Heart J ; 43(45): 4739-4750, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200607

RESUMEN

AIMS: In response to pro-fibrotic signals, scleraxis regulates cardiac fibroblast activation in vitro via transcriptional control of key fibrosis genes such as collagen and fibronectin; however, its role in vivo is unknown. The present study assessed the impact of scleraxis loss on fibroblast activation, cardiac fibrosis, and dysfunction in pressure overload-induced heart failure. METHODS AND RESULTS: Scleraxis expression was upregulated in the hearts of non-ischemic dilated cardiomyopathy patients, and in mice subjected to pressure overload by transverse aortic constriction (TAC). Tamoxifen-inducible fibroblast-specific scleraxis knockout (Scx-fKO) completely attenuated cardiac fibrosis, and significantly improved cardiac systolic function and ventricular remodelling, following TAC compared to Scx+/+ TAC mice, concomitant with attenuation of fibroblast activation. Scleraxis deletion, after the establishment of cardiac fibrosis, attenuated the further functional decline observed in Scx+/+ mice, with a reduction in cardiac myofibroblasts. Notably, scleraxis knockout reduced pressure overload-induced mortality from 33% to zero, without affecting the degree of cardiac hypertrophy. Scleraxis directly regulated transcription of the myofibroblast marker periostin, and cardiac fibroblasts lacking scleraxis failed to upregulate periostin synthesis and secretion in response to pro-fibrotic transforming growth factor ß. CONCLUSION: Scleraxis governs fibroblast activation in pressure overload-induced heart failure, and scleraxis knockout attenuated fibrosis and improved cardiac function and survival. These findings identify scleraxis as a viable target for the development of novel anti-fibrotic treatments.


Asunto(s)
Insuficiencia Cardíaca , Remodelación Ventricular , Ratones , Animales , Fibrosis , Miofibroblastos/metabolismo , Cardiomegalia/metabolismo , Fibroblastos/metabolismo , Insuficiencia Cardíaca/patología , Miocardio/patología , Ratones Endogámicos C57BL
11.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239853

RESUMEN

Duchenne muscular dystrophy (DMD) is characterized by wasting of muscles that leads to difficulty moving and premature death, mainly from heart failure. Glucocorticoids are applied in the management of the disease, supporting the hypothesis that inflammation may be driver as well as target. However, the inflammatory mechanisms during progression of cardiac and skeletal muscle dysfunction are still not well characterized. Our objective was to characterize the inflammasomes in myocardial and skeletal muscle in rodent models of DMD. Gastrocnemius and heart samples were collected from mdx mice and DMDmdx rats (3 and 9-10 months). Inflammasome sensors and effectors were assessed by immunoblotting. Histology was used to assess leukocyte infiltration and fibrosis. In gastrocnemius, a tendency towards elevation of gasdermin D irrespective of the age of the animal was observed. The adaptor protein was elevated in the mdx mouse skeletal muscle and heart. Increased cleavage of the cytokines was observed in the skeletal muscle of the DMDmdx rats. Sensor or cytokine expression was not changed in the tissue samples of the mdx mice. In conclusion, inflammatory responses are distinct between the skeletal muscle and heart in relevant models of DMD. Inflammation tends to decrease over time, supporting the clinical observations that the efficacy of anti-inflammatory therapies might be more prominent in the early stage.


Asunto(s)
Distrofia Muscular de Duchenne , Ratones , Ratas , Animales , Distrofia Muscular de Duchenne/metabolismo , Inflamasomas/metabolismo , Ratones Endogámicos mdx , Roedores/metabolismo , Músculo Esquelético/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad
12.
J Mol Cell Cardiol ; 164: 13-16, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34774871

RESUMEN

Aged males disproportionately succumb to increased COVID-19 severity, hospitalization, and mortality compared to females. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2) facilitate SARS-CoV-2 viral entry and may have sexually dimorphic regulation. As viral load dictates disease severity, we investigated the expression, protein levels, and activity of ACE2 and TMPRSS2. Our data reveal that aged males have elevated ACE2 in both mice and humans across organs. We report the first comparative study comprehensively investigating the impact of sex and age in murine and human levels of ACE2 and TMPRSS2, to begin to elucidate the sex bias in COVID-19 severity.


Asunto(s)
Envejecimiento/metabolismo , Enzima Convertidora de Angiotensina 2/biosíntesis , COVID-19/epidemiología , Regulación Enzimológica de la Expresión Génica , Receptores Virales/biosíntesis , SARS-CoV-2/fisiología , Caracteres Sexuales , Envejecimiento/genética , Enzima Convertidora de Angiotensina 2/genética , Animales , Susceptibilidad a Enfermedades , Femenino , Corazón/virología , Humanos , Intestino Delgado/enzimología , Intestino Delgado/virología , Riñón/enzimología , Riñón/virología , Pulmón/enzimología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocardio/enzimología , Especificidad de Órganos , Receptores Virales/genética , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética , Adulto Joven
13.
Am J Physiol Heart Circ Physiol ; 323(6): H1262-H1269, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367689

RESUMEN

Myocardial pathologies resulting from SARS-CoV-2 infections are consistently rising with mounting case rates and reinfections; however, the precise global burden is largely unknown and will have an unprecedented impact. Understanding the mechanisms of COVID-19-mediated cardiac injury is essential toward the development of cardioprotective agents that are urgently needed. Assessing novel therapeutic strategies to tackle COVID-19 necessitates an animal model that recapitulates human disease. Here, we sought to compare SARS-CoV-2-infected animals with patients with COVID-19 to identify common mechanisms of cardiac injury. Two-month-old hamsters were infected with either the ancestral (D614) or Delta variant (B.1.617.2) of SARS-CoV-2 for 2 days, 7 days, and/or 14 days. We measured viral RNA and cytokine expression at the earlier time points to capture the initial stages of infection in the lung and heart. We assessed myocardial angiotensin-converting enzyme 2 (ACE2), the entry receptor for the SARS-CoV-2 virus, and cardioprotective enzyme, as well as markers for inflammatory cell infiltration in the hamster hearts at days 7 and 14. In parallel, human hearts were stained for ACE2, viral nucleocapsid, and inflammatory cells. Indeed, we identify myocardial ACE2 downregulation and myeloid cell burden as common events in both hamsters and humans infected with SARS-CoV-2, and we propose targeting downstream ACE2 downregulation as a therapeutic avenue that warrants clinical investigation.NEW & NOTEWORTHY Cardiac manifestations of COVID-19 in humans are mirrored in the SARS-CoV-2 hamster model, recapitulating myocardial damage, ACE2 downregulation, and a consistent pattern of immune cell infiltration independent of viral dose and variant. Therefore, the hamster model is a valid approach to study therapeutic strategies for COVID-19-related heart disease.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Animales , Humanos , Cricetinae , Lactante , SARS-CoV-2 , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Inflamación
14.
FASEB J ; 35(10): e21932, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34549830

RESUMEN

Myocardial fibrosis is a characteristic of various cardiomyopathies, and myocardial fibroblasts play a central role in this process. Gelsolin (GSN) is an actin severing and capping protein that regulates actin assembly and may be involved in fibroblast activation. While the role of GSN in mechanical stress-mediated cardiac fibrosis has been explored, its role in myocardial fibrosis in the absence of mechanical stress is not defined. In this study, we investigated the role of GSN in myocardial fibrosis induced by Angiotensin II (Ang II), a profibrotic hormone that is elevated in cardiovascular disease. We utilized mice lacking GSN (Gsn-/- ) and cultured primary adult cardiac fibroblasts (cFB). In vivo, Ang II infusion in mice resulted in significantly less severe myocardial fibrosis in Gsn-/- compared with Gsn+/+ mice, along with diminished activation of the TGFß1-Smad2/3 pathway, and reduced expression of cardiac extracellular matrix proteins (collagen, fibronectin, periostin). Moreover, Gsn-deficient hearts exhibited suppressed activity of the AMPK pathway and its downstream effectors, mTOR and P70S6Kinase, which could contribute to the suppressed TGFß1 activity. In vitro, the Ang II-induced activation of cFBs was reduced in Gsn-deficient fibroblasts evident from decreased expression of αSMA and periostin, diminished actin filament turnover; which also exhibited reduced activity of the AMPK-mTOR pathway, and P70S6K phosphorylation. AMPK inhibition compensated for the loss of GSN, restored the levels of G-actin in Gsn-/- cFBs and promoted activation to myofibroblasts by increasing αSMA and periostin levels. This study reveals a novel role for GSN in mediating myocardial fibrosis by regulating the AMPK-mTOR-P70S6K pathway in cFB activation independent from mechanical stress-induced factors.


Asunto(s)
Angiotensina II/farmacología , Fibroblastos/efectos de los fármacos , Fibrosis/patología , Gelsolina/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Actinas/metabolismo , Animales , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/metabolismo , Gelsolina/deficiencia , Gelsolina/genética , Homeostasis , Masculino , Ratones , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/patología , Fosforilación , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
15.
Circ Res ; 126(10): 1456-1474, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32264791

RESUMEN

ACE2 (angiotensin-converting enzyme 2) has a multiplicity of physiological roles that revolve around its trivalent function: a negative regulator of the renin-angiotensin system, facilitator of amino acid transport, and the severe acute respiratory syndrome-coronavirus (SARS-CoV) and SARS-CoV-2 receptor. ACE2 is widely expressed, including, in the lungs, cardiovascular system, gut, kidneys, central nervous system, and adipose tissue. ACE2 has recently been identified as the SARS-CoV-2 receptor, the infective agent responsible for coronavirus disease 2019, providing a critical link between immunity, inflammation, ACE2, and cardiovascular disease. Although sharing a close evolutionary relationship with SARS-CoV, the receptor-binding domain of SARS-CoV-2 differs in several key amino acid residues, allowing for stronger binding affinity with the human ACE2 receptor, which may account for the greater pathogenicity of SARS-CoV-2. The loss of ACE2 function following binding by SARS-CoV-2 is driven by endocytosis and activation of proteolytic cleavage and processing. The ACE2 system is a critical protective pathway against heart failure with reduced and preserved ejection fraction including, myocardial infarction and hypertension, and against lung disease and diabetes mellitus. The control of gut dysbiosis and vascular permeability by ACE2 has emerged as an essential mechanism of pulmonary hypertension and diabetic cardiovascular complications. Recombinant ACE2, gene-delivery of Ace2, Ang 1-7 analogs, and Mas receptor agonists enhance ACE2 action and serve as potential therapies for disease conditions associated with an activated renin-angiotensin system. rhACE2 (recombinant human ACE2) has completed clinical trials and efficiently lowered or increased plasma angiotensin II and angiotensin 1-7 levels, respectively. Our review summarizes the progress over the past 20 years, highlighting the critical role of ACE2 as the novel SARS-CoV-2 receptor and as the negative regulator of the renin-angiotensin system, together with implications for the coronavirus disease 2019 pandemic and associated cardiovascular diseases.


Asunto(s)
Betacoronavirus/fisiología , Enfermedades Cardiovasculares , Infecciones por Coronavirus , Pandemias , Peptidil-Dipeptidasa A/fisiología , Neumonía Viral , Sistema Renina-Angiotensina/fisiología , Proteína ADAM17/fisiología , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/fisiopatología , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/virología , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/fisiopatología , Humanos , Terapia Molecular Dirigida , Neumonía Viral/complicaciones , Neumonía Viral/metabolismo , Neumonía Viral/fisiopatología , Neumonía Viral/virología , Receptores Virales/fisiología , SARS-CoV-2 , Acoplamiento Viral , Tratamiento Farmacológico de COVID-19
16.
Arterioscler Thromb Vasc Biol ; 41(6): 1874-1889, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33792349
17.
Echocardiography ; 39(10): 1328-1337, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198087

RESUMEN

BACKGROUND: Patients with muscular dystrophy (MD) are at elevated risk of serious cardiac complications and clinical assessment is limited due to inherent physical limitations. We assessed the utility of left ventricular ejection fraction (LVEF) derived from transthoracic echocardiogram (TTE) as a prognostic marker for major adverse cardiac events (MACE) in a mixed adult MD cohort. METHODS: One hundred and sixty-five MD patients (median age: 36 (interquartile range [IQR]: 23.0-49.0) years; 65 [39.4%] females) were enrolled in our prospective cohort study. Diagnoses included dystrophinopathies (n = 42), limb-girdle MD (n = 31), type 1 myotonic dystrophy (n = 71), and facioscapulohumeral MD (n = 21). Left ventricular ejection fraction, ventricular dimensions at end-diastole and end-systole, and serial measures (n = 124; follow-up period: 2.19 [IQR: 1.05-3.32] years) stratified patients for MACE risk. RESULTS: Cardiomyopathy was diagnosed in 60 (36.4%) patients of the broader cohort (median LVEF: 45.0 [IQR: 35.0-50.0] %). Ninety-eight MACE occurred over the 7-year study period. At baseline, patients with a LVEF < 55.0% had a high risk of MACE (adjusted odds ratio: 8.30; 95% confidence interval [CI]: 3.18-21.7), concordant with the analysis of LV dimensions. Forty-one percent of these patients showed an improvement in LVEF with the optimization of medical and device therapies. Relative to patients with preserved LVEF, patients with reduced LVEF were at an elevated risk of MACE (adjusted hazard ratio [aHR]: 7.21; 95% CI: 1.99-26.1), and improved LVEF resulted in comparable outcomes (aHR: 1.84; 95% CI: .49-6.91) associated with optimization of medical and device therapies. Reduction in QRS duration by CRT therapy was associated with an improvement in LVEF (average improvement: 12.8 [± 2.30] %; p = .04). CONCLUSIONS: Reduction in LVEF indicates an increased risk of cardiovascular events in patients with MD. Baseline and serial LVEF obtained by TTE can prognosticate patients for MACE and guide clinical management.


Asunto(s)
Cardiomiopatías , Distrofias Musculares , Disfunción Ventricular Izquierda , Adulto , Femenino , Humanos , Adulto Joven , Persona de Mediana Edad , Masculino , Volumen Sistólico/fisiología , Función Ventricular Izquierda/fisiología , Estudios Prospectivos , Distrofias Musculares/complicaciones , Disfunción Ventricular Izquierda/complicaciones
18.
Proc Natl Acad Sci U S A ; 116(26): 13006-13015, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31189595

RESUMEN

Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. Loss of APLN potentiated angiotensin II (Ang II)-induced AAA formation, aortic rupture, and reduced survival. Formation of AAA was driven by increased smooth muscle cell (SMC) apoptosis and oxidative stress in Apln-/y aorta and in APLN-deficient cultured murine and human aortic SMCs. Ang II-induced myogenic response and hypertension were greater in Apln-/y mice, however, an equivalent hypertension induced by phenylephrine, an α-adrenergic agonist, did not cause AAA or rupture in Apln-/y mice. We further identified Ang converting enzyme 2 (ACE2), the major negative regulator of the renin-Ang system (RAS), as an important target of APLN action in the vasculature. Using a combination of genetic, pharmacological, and modeling approaches, we identified neutral endopeptidase (NEP) that is up-regulated in human AAA tissue as a major enzyme that metabolizes and inactivates APLN-17 peptide. We designed and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2, that is resistant to NEP cleavage. This stable APLN analog ameliorated Ang II-mediated adverse aortic remodeling and AAA formation in an established model of AAA, high-fat diet (HFD) in Ldlr-/- mice. Our findings define a critical role of APLN in AAA formation through induction of ACE2 and protection of vascular SMCs, whereas stable APLN analogs provide an effective therapy for vascular diseases.


Asunto(s)
Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/patología , Apelina/metabolismo , Neprilisina/metabolismo , Anciano , Anciano de 80 o más Años , Angiotensina II/administración & dosificación , Enzima Convertidora de Angiotensina 2 , Animales , Aorta Abdominal/citología , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Aneurisma de la Aorta Abdominal/etiología , Apelina/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacología , Fármacos Cardiovasculares/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Miocitos del Músculo Liso , Neprilisina/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Peptidil-Dipeptidasa A/metabolismo , Fenilefrina/administración & dosificación , Cultivo Primario de Células , Proteolisis/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Remodelación Vascular/efectos de los fármacos , Remodelación Vascular/genética
19.
Curr Heart Fail Rep ; 19(6): 458-466, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36167917

RESUMEN

PURPOSE OF REVIEW: The coronavirus disease 2019 (COVID-19) pandemic has popularized the usage of hydroxychloroquine and chloroquine (HCQ/CQ) as treatments for COVID-19. Previously used as anti-malarial and now commonly used in rheumatologic conditions, preliminary in vitro studies have demonstrated these medications also have anti-viral properties. Retinopathy and neuromyopathy are well recognized complications of using these treatments; however, cardiotoxicity is under-recognized. This review will discuss the implications and cardiotoxicity of HCQ/CQ, their mechanisms of action, and their utility in COVID-19. RECENT FINDINGS: Early clinical trials demonstrated a modest benefit of HCQ in COVID-19, causing a push for the usage of it. However, further large multi-center randomized control centers, demonstrated no benefit, and even a trend towards worse outcomes. The predominant cardiac complication observed with HCQ in COVID-19 was cardiac arrhythmias and prolonging of the QT interval. However, with chronic usage of HCQ/CQ, the development of heart failure (HF) and cardiomyopathy (CM) can occur. Although, most adverse cardiac events related to HCQ/CQ usage in COVID-19 were secondary to conduction disorders given the short duration of treatment, HCQ/CQ can cause CM and HF, with chronic usage. Given the insufficient evidence, HCQ/CQ usage in COVID-19 is not routinely recommended, especially with novel therapies now being developed and used. Additionally, usage of HCQ/CQ should prompt initial cardiac evaluation with ECG, and yearly monitoring, with consideration for advanced imaging if clinically warranted. The diagnosis of HCQ/CQ cardiomyopathy is important, as prompt cessation can allow for recovery when these changes are still reversible.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Insuficiencia Cardíaca , Humanos , Hidroxicloroquina/efectos adversos , Pandemias , SARS-CoV-2 , Cardiotoxicidad/etiología , Insuficiencia Cardíaca/tratamiento farmacológico , Cloroquina/efectos adversos
20.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35216165

RESUMEN

Left ventricular assist device (LVAD) use in patients with dilated cardiomyopathy (DCM) can lead to a differential response in the LV and right ventricle (RV), and RV failure remains the most common complication post-LVAD insertion. We assessed transcriptomic signatures in end-stage DCM, and evaluated changes in gene expression (mRNA) and regulation (microRNA/miRNA) following LVAD. LV and RV free-wall tissues were collected from end-stage DCM hearts with (n = 8) and without LVAD (n = 8). Non-failing control tissues were collected from donated hearts (n = 6). Gene expression (for mRNAs/miRNAs) was determined using microarrays. Our results demonstrate that immune response, oxygen homeostasis, and cellular physiological processes were the most enriched pathways among differentially expressed genes in both ventricles of end-stage DCM hearts. LV genes involved in circadian rhythm, muscle contraction, cellular hypertrophy, and extracellular matrix (ECM) remodelling were differentially expressed. In the RV, genes related to the apelin signalling pathway were affected. Following LVAD use, immune response genes improved in both ventricles; oxygen homeostasis and ECM remodelling genes improved in the LV and, four miRNAs normalized. We conclude that LVAD reduced the expression and induced additional transcriptomic changes of various mRNAs and miRNAs as an integral component of the reverse ventricular remodelling in a chamber-specific manner.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Corazón Auxiliar/efectos adversos , Transcriptoma , Adulto , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/terapia , Femenino , Ventrículos Cardíacos/metabolismo , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA