Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
BMC Genomics ; 25(1): 553, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831310

RESUMEN

Development of the human pancreas requires the precise temporal control of gene expression via epigenetic mechanisms and the binding of key transcription factors. We quantified genome-wide patterns of DNA methylation in human fetal pancreatic samples from donors aged 6 to 21 post-conception weeks. We found dramatic changes in DNA methylation across pancreas development, with > 21% of sites characterized as developmental differentially methylated positions (dDMPs) including many annotated to genes associated with monogenic diabetes. An analysis of DNA methylation in postnatal pancreas tissue showed that the dramatic temporal changes in DNA methylation occurring in the developing pancreas are largely limited to the prenatal period. Significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small proportion of sites showing sex-specific DNA methylation trajectories across pancreas development. Pancreas dDMPs were not distributed equally across the genome and were depleted in regulatory domains characterized by open chromatin and the binding of known pancreatic development transcription factors. Finally, we compared our pancreas dDMPs to previous findings from the human brain, identifying evidence for tissue-specific developmental changes in DNA methylation. This study represents the first systematic exploration of DNA methylation patterns during human fetal pancreas development and confirms the prenatal period as a time of major epigenomic plasticity.


Asunto(s)
Metilación de ADN , Páncreas , Humanos , Páncreas/metabolismo , Páncreas/embriología , Femenino , Masculino , Regulación del Desarrollo de la Expresión Génica , Islas de CpG , Epigénesis Genética , Genoma Humano , Feto/metabolismo
2.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34397088

RESUMEN

The maintenance of pluripotency in mouse embryonic stem cells (ESCs) is governed by the action of an interconnected network of transcription factors. Among them, only Oct4 and Sox2 have been shown to be strictly required for the self-renewal of ESCs and pluripotency, particularly in culture conditions in which differentiation cues are chemically inhibited. Here, we report that the conjunct activity of two orphan nuclear receptors, Esrrb and Nr5a2, parallels the importance of that of Oct4 and Sox2 in naïve mouse ESCs. By occupying a large common set of regulatory elements, these two factors control the binding of Oct4, Sox2 and Nanog to DNA. Consequently, in their absence the pluripotency network collapses and the transcriptome is substantially deregulated, leading to the differentiation of ESCs. Altogether, this work identifies orphan nuclear receptors, previously thought to be performing supportive functions, as a set of core regulators of naïve pluripotency.


Asunto(s)
Células Madre Embrionarias de Ratones/citología , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Diferenciación Celular , Autorrenovación de las Células , Redes Reguladoras de Genes , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Unión Proteica , Receptores de Estrógenos/genética , Factores de Transcripción SOXB1/metabolismo
3.
Nucleic Acids Res ; 50(13): 7367-7379, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35762231

RESUMEN

Histone H3 Lysine 9 (H3K9) methylation, a characteristic mark of heterochromatin, is progressively implemented during development to contribute to cell fate restriction as differentiation proceeds. Accordingly, in undifferentiated and pluripotent mouse Embryonic Stem (ES) cells the global levels of H3K9 methylation are rather low and increase only upon differentiation. How global H3K9 methylation levels are coupled with the loss of pluripotency remains largely unknown. Here, we identify SUV39H1, a major H3K9 di- and tri-methylase, as an indirect target of the pluripotency network of Transcription Factors (TFs). We find that pluripotency TFs, principally OCT4, activate the expression of Suv39h1as, an antisense long non-coding RNA to Suv39h1. In turn, Suv39h1as downregulates Suv39h1 transcription in cis via a mechanism involving the modulation of the chromatin status of the locus. The targeted deletion of the Suv39h1as promoter region triggers increased SUV39H1 expression and H3K9me2 and H3K9me3 levels, affecting all heterochromatic regions, particularly peri-centromeric major satellites and retrotransposons. This increase in heterochromatinization efficiency leads to accelerated and more efficient commitment into differentiation. We report, therefore, a simple genetic circuitry coupling the genetic control of pluripotency with the global efficiency of H3K9 methylation associated with a major cell fate restriction, the irreversible loss of pluripotency.


Asunto(s)
Histonas , Metiltransferasas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , ARN Largo no Codificante , Proteínas Represoras/metabolismo , Animales , Cromatina , Código de Histonas , Histonas/genética , Histonas/metabolismo , Metilación , Metiltransferasas/genética , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Represoras/genética
4.
Immunity ; 40(6): 989-1001, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24909886

RESUMEN

Environmental stimuli are known to contribute to psoriasis pathogenesis and that of other autoimmune diseases, but the mechanisms are largely unknown. Here we show that the aryl hydrocarbon receptor (AhR), a transcription factor that senses environmental stimuli, modulates pathology in psoriasis. AhR-activating ligands reduced inflammation in the lesional skin of psoriasis patients, whereas AhR antagonists increased inflammation. Similarly, AhR signaling via the endogenous ligand FICZ reduced the inflammatory response in the imiquimod-induced model of skin inflammation and AhR-deficient mice exhibited a substantial exacerbation of the disease, compared to AhR-sufficient controls. Nonhematopoietic cells, in particular keratinocytes, were responsible for this hyperinflammatory response, which involved upregulation of AP-1 family members of transcription factors. Thus, our data suggest a critical role for AhR in the regulation of inflammatory responses and open the possibility for novel therapeutic strategies in chronic inflammatory disorders.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Inflamación/inmunología , Psoriasis/inmunología , Receptores de Hidrocarburo de Aril/inmunología , Adyuvantes Inmunológicos/farmacología , Aminoquinolinas/farmacología , Animales , Hidrocarburo de Aril Hidroxilasas/biosíntesis , Compuestos Azo/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carbazoles/farmacología , Citocromo P-450 CYP1A1/biosíntesis , Citocromo P-450 CYP1B1 , Citocinas/farmacología , Exposición a Riesgos Ambientales , Humanos , Imiquimod , Queratinocitos/inmunología , Ratones , Ratones Noqueados , Psoriasis/patología , Pirazoles/farmacología , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal/inmunología , Piel/inmunología , Piel/metabolismo , Factores de Transcripción/biosíntesis , Regulación hacia Arriba
5.
Genome Res ; 29(2): 250-260, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30655337

RESUMEN

Mitotic bookmarking transcription factors (BFs) maintain the capacity to bind to their targets during mitosis, despite major rearrangements of the chromatin. While they were thought to propagate gene regulatory information through mitosis by statically occupying their DNA targets, it has recently become clear that BFs are highly dynamic in mitotic cells. This represents both a technical and a conceptual challenge to study and understand the function of BFs: First, formaldehyde has been suggested to be unable to efficiently capture these transient interactions, leading to profound contradictions in the literature; and second, if BFs are not permanently bound to their targets during mitosis, it becomes unclear how they convey regulatory information to daughter cells. Here, comparing formaldehyde to alternative fixatives we clarify the nature of the chromosomal association of previously proposed BFs in embryonic stem cells: While ESRRB can be considered as a canonical BF that binds at selected regulatory regions in mitosis, SOX2 and POU5F1 (also known as OCT4) establish DNA sequence-independent interactions with the mitotic chromosomes, either throughout the chromosomal arms (SOX2) or at pericentromeric regions (POU5F1). Moreover, we show that ordered nucleosomal arrays are retained during mitosis at ESRRB bookmarked sites, whereas regions losing transcription factor binding display a profound loss of order. By maintaining nucleosome positioning during mitosis, ESRRB might ensure the rapid post-mitotic re-establishment of functional regulatory complexes at selected enhancers and promoters. Our results provide a mechanistic framework that reconciles dynamic mitotic binding with the transmission of gene regulatory information across cell division.


Asunto(s)
Mitosis/genética , Nucleosomas/química , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Cromatina/metabolismo , Cromosomas de los Mamíferos , Fijadores , Formaldehído , Ratones , Receptores de Estrógenos/metabolismo , Succinimidas
6.
Development ; 144(20): 3633-3645, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29042475

RESUMEN

The changes imposed on the nucleus, chromatin and its regulators during mitosis lead to the dismantlement of most gene regulatory processes. However, an increasing number of transcriptional regulators are being identified as capable of binding their genomic targets during mitosis. These so-called 'mitotic bookmarking factors' encompass transcription factors and chromatin modifiers that are believed to convey gene regulatory information from mother to daughter cells. In this Primer, we review mitotic bookmarking processes in development and stem cells and discuss the interest and potential importance of this concept with regard to epigenetic regulation and cell fate transitions involving cellular proliferation.


Asunto(s)
Mitosis , Células Madre/citología , Animales , Ciclo Celular , Diferenciación Celular , Linaje de la Célula , Núcleo Celular/metabolismo , Cromatina/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Factores de Transcripción/metabolismo
7.
Dev Biol ; 426(2): 401-408, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27418388

RESUMEN

Advances in RNA sequencing technologies have led to the surprising discovery that a vast number of transcripts emanate from regions of the genome that are not part of coding genes. Although some of the smaller ncRNAs such as microRNAs have well-characterized functions, the majority of long ncRNA (lncRNA) functions remain poorly understood. Understanding the significance of lncRNAs is an important challenge facing biology today. A powerful approach to uncovering the function of lncRNAs is to explore temporal and spatial expression profiling. This may be particularly useful for classes of lncRNAs that have developmentally important roles as the expression of such lncRNAs will be expected to be both spatially and temporally regulated during development. Here, we take advantage of our ultra-high frequency (temporal) sampling of Xenopus embryos to analyze gene expression trajectories of lncRNA transcripts over the first 3 days of development. We computationally identify 5689 potential single- and multi-exon lncRNAs. These lncRNAs demonstrate clear dynamic expression patterns. A subset of them displays highly correlative temporal expression profiles with respect to those of the neighboring genes. We also identified spatially localized lncRNAs in the gastrula stage embryo. These results suggest that lncRNAs have regulatory roles during early embryonic development.


Asunto(s)
ARN Largo no Codificante/genética , Xenopus/genética , Animales , Embrión no Mamífero/metabolismo , Exones/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Modelos Genéticos , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/aislamiento & purificación , Transcriptoma , Xenopus/embriología
8.
Development ; 141(9): 1927-39, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24757007

RESUMEN

The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss of synchronous cell divisions. Little is known about what triggers the activation of transcription or how newly expressed genes interact with each other. Here, we use high-resolution expression profiling to identify three waves of gene activity: a post-fertilisation wave involving polyadenylation of maternal transcripts; a broad wave of zygotic transcription detectable as early as the seventh cleavage and extending beyond the MBT at the twelfth cleavage; and a shorter post-MBT wave of transcription that becomes apparent as development proceeds. Our studies have also allowed us to define a set of maternal mRNAs that are deadenylated shortly after fertilisation, and are likely to be degraded thereafter. Experimental analysis indicates that the polyadenylation of maternal transcripts is necessary for the establishment of proper levels of zygotic transcription at the MBT, and that genes activated in the second wave of expression, including Brachyury and Mixer, contribute to the regulation of genes expressed in the third. Together, our high-resolution time series and experimental studies have yielded a deeper understanding of the temporal organisation of gene regulatory networks in the early Xenopus embryo.


Asunto(s)
Blástula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Xenopus/embriología , Xenopus/genética , Animales , Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Poli A/metabolismo , Poliadenilación/genética , Estabilidad del ARN/genética , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Pez Cebra/genética
9.
Dev Biol ; 408(2): 252-68, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26100918

RESUMEN

Correct development of the vertebrate body plan requires the early definition of two asymmetric, perpendicular axes. The first axis is established during oocyte maturation, and the second is established by symmetry breaking shortly after fertilization. The physical processes generating the second asymmetric, or dorsal-ventral, axis are well understood, but the specific molecular determinants, presumed to be maternal gene products, are poorly characterized. Whilst enrichment of maternal mRNAs at the animal and vegetal poles in both the oocyte and the early embryo has been studied, little is known about the distribution of maternal mRNAs along either the dorsal-ventral or left-right axes during the early cleavage stages. Here we report an unbiased analysis of the distribution of maternal mRNA on all axes of the Xenopus tropicalis 8-cell stage embryo, based on sequencing of single blastomeres whose positions within the embryo are known. Analysis of pooled data from complete sets of blastomeres from four embryos has identified 908 mRNAs enriched in either the animal or vegetal blastomeres, of which 793 are not previously reported as enriched. In contrast, we find no evidence for asymmetric distribution along either the dorsal-ventral or left-right axes. We confirm that animal pole enrichment is on average distinctly lower than vegetal pole enrichment, and that considerable variation is found between reported enrichment levels in different studies. We use publicly available data to show that there is a significant association between genes with human disease annotation and enrichment at the animal pole. Mutations in the human ortholog of the most animally enriched novel gene, Slc35d1, are causative for Schneckenbecken dysplasia, and we show that a similar phenotype is produced by depletion of the orthologous protein in Xenopus embryos.


Asunto(s)
Blastómeros/metabolismo , Xenopus/embriología , Xenopus/genética , Animales , Tipificación del Cuerpo/genética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Modelos Animales , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Mutación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Xenopus/metabolismo , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/genética
10.
BMC Dev Biol ; 16(1): 38, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27784267

RESUMEN

BACKGROUND: Because ribosomes are ubiquitously required for protein production, it was long assumed that any inherited defect in ribosome manufacture would be embryonically lethal. However, several human congenital diseases have been found to be associated with mutations in ribosome biogenesis factors. Surprisingly, despite the global requirement for ribosomes, these "ribosomopathies" are characterized by distinct and tissue specific phenotypes. The reasons for such tissue proclivity in ribosomopathies remain mysterious but may include differential expression of ribosome biogenesis factors in distinct tissues. METHODS: Here we use in situ hybridization of labeled antisense mRNA probes and ultra high temporal resolution RNA-Seq data to examine and compare expression of 13 disease associated ribosome biogenesis factors at six key stages in Xenopus tropicalis development. RESULTS: Rather than being ubiquitously expressed during development, mRNAs of all examined ribosome biogenesis factors were highly enriched in specific tissues, including the cranial neural crest and ventral blood islands. Interestingly, expression of ribosome biogenesis factors demonstrates clear differences in timing, transcript number and tissue localization. CONCLUSION: Ribosome biogenesis factor expression is more spatiotemporally regulated during embryonic development than previously expected and correlates closely with many of the common ribosomopathy phenotypes. Our findings provide information on the dynamic use of ribosome production machinery components during development and advance our understanding of their roles in disease.


Asunto(s)
Ribosomas/metabolismo , Análisis de Secuencia de ARN/métodos , Proteínas de Xenopus/genética , Xenopus/embriología , Animales , Desarrollo Embrionario , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Hibridación in Situ , Especificidad de Órganos , Ribosomas/genética , Ribosomas/patología , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
11.
PLoS Pathog ; 10(11): e1004447, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25375107

RESUMEN

West Nile virus (WNV) is a human pathogen of significant medical importance with close to 40,000 cases of encephalitis and more than 1,600 deaths reported in the US alone since its first emergence in New York in 1999. Previous studies identified a motif in the beginning of non-structural gene NS2A of encephalitic flaviviruses including WNV which induces programmed -1 ribosomal frameshift (PRF) resulting in production of an additional NS protein NS1'. We have previously demonstrated that mutant WNV with abolished PRF was attenuated in mice. Here we have extended our previous observations by showing that PRF does not appear to have a significant role in virus replication, virion formation, and viral spread in several cell lines in vitro. However, we have also shown that PRF induces an over production of structural proteins over non-structural proteins in virus-infected cells and that mutation abolishing PRF is present in ∼11% of the wild type virus population. In vivo experiments in house sparrows using wild type and PRF mutant of New York 99 strain of WNV viruses showed some attenuation for the PRF mutant virus. Moreover, PRF mutant of Kunjin strain of WNV showed significant decrease compared to wild type virus infection in dissemination of the virus from the midgut through the haemocoel, and ultimately the capacity of infected mosquitoes to transmit virus. Thus our results demonstrate an important role for PRF in regulating expression of viral genes and consequently virus replication in avian and mosquito hosts.


Asunto(s)
Sistema de Lectura Ribosómico/fisiología , Regulación Viral de la Expresión Génica/fisiología , Replicación Viral/fisiología , Fiebre del Nilo Occidental/metabolismo , Virus del Nilo Occidental/fisiología , Animales , Aves/virología , Chlorocebus aethiops , Cricetinae , Culicidae/virología , Humanos , Ratones , Ratones Noqueados , New York , Células Vero , Fiebre del Nilo Occidental/epidemiología
12.
Eur J Hum Genet ; 32(7): 813-818, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38605124

RESUMEN

Persistent congenital hyperinsulinism (HI) is a rare genetically heterogeneous condition characterised by dysregulated insulin secretion leading to life-threatening hypoglycaemia. For up to 50% of affected individuals screening of the known HI genes does not identify a disease-causing variant. Large deletions have previously been used to identify novel regulatory regions causing HI. Here, we used genome sequencing to search for novel large (>1 Mb) deletions in 180 probands with HI of unknown cause and replicated our findings in a large cohort of 883 genetically unsolved individuals with HI using off-target copy number variant calling from targeted gene panels. We identified overlapping heterozygous deletions in five individuals (range 3-8 Mb) spanning chromosome 20p11.2. The pancreatic beta-cell transcription factor gene, FOXA2, a known cause of HI was deleted in two of the five individuals. In the remaining three, we found a minimal deleted region of 2.4 Mb adjacent to FOXA2 that encompasses multiple non-coding regulatory elements that are in conformational contact with FOXA2. Our data suggests that the deletions in these three children may cause disease through the dysregulation of FOXA2 expression. These findings provide new insights into the regulation of FOXA2 in the beta-cell and confirm an aetiological role for chromosome 20p11.2 deletions in syndromic HI.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 20 , Hiperinsulinismo Congénito , Factor Nuclear 3-beta del Hepatocito , Humanos , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Hiperinsulinismo Congénito/genética , Hiperinsulinismo Congénito/patología , Cromosomas Humanos Par 20/genética , Femenino , Masculino , Secuencias Reguladoras de Ácidos Nucleicos
13.
BMC Genomics ; 14: 357, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23714049

RESUMEN

BACKGROUND: Genomic sequence assemblies are key tools for a broad range of gene function and evolutionary studies. The diploid amphibian Xenopus tropicalis plays a pivotal role in these fields due to its combination of experimental flexibility, diploid genome, and early-branching tetrapod taxonomic position, having diverged from the amniote lineage ~360 million years ago. A genome assembly and a genetic linkage map have recently been made available. Unfortunately, large gaps in the linkage map attenuate long-range integrity of the genome assembly. RESULTS: We laser dissected the short arm of X. tropicalis chromosome 7 for next generation sequencing and computational mapping to the reference genome. This arm is of particular interest as it encodes the sex determination locus, but its genetic map contains large gaps which undermine available genome assemblies. Whole genome amplification of 15 laser-microdissected 7p arms followed by next generation sequencing yielded ~35 million reads, over four million of which uniquely mapped to the X. tropicalis genome. Our analysis placed more than 200 previously unmapped scaffolds on the analyzed chromosome arm, providing valuable low-resolution physical map information for de novo genome assembly. CONCLUSION: We present a new approach for improving and validating genetic maps and sequence assemblies. Whole genome amplification of 15 microdissected chromosome arms provided sufficient high-quality material for localizing previously unmapped scaffolds and genes as well as recognizing mislocalized scaffolds.


Asunto(s)
Cromosomas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Rayos Láser , Microdisección , Análisis de Secuencia de ADN/métodos , Animales , Mapeo Cromosómico , Genómica , Técnicas de Amplificación de Ácido Nucleico , Hibridación de Ácido Nucleico , Xenopus/genética
14.
Nat Genet ; 55(12): 2075-2081, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973953

RESUMEN

Identifying genes linked to extreme phenotypes in humans has the potential to highlight biological processes not shared with all other mammals. Here, we report the identification of homozygous loss-of-function variants in the primate-specific gene ZNF808 as a cause of pancreatic agenesis. ZNF808 is a member of the KRAB zinc finger protein family, a large and rapidly evolving group of epigenetic silencers which target transposable elements. We show that loss of ZNF808 in vitro results in aberrant activation of regulatory potential contained in the primate-specific transposable elements it represses during early pancreas development. This leads to inappropriate specification of cell fate with induction of genes associated with liver identity. Our results highlight the essential role of ZNF808 in pancreatic development in humans and the contribution of primate-specific regions of the human genome to congenital developmental disease.


Asunto(s)
Anomalías Congénitas , Elementos Transponibles de ADN , Proteínas de Unión al ADN , Páncreas , Animales , Humanos , Diferenciación Celular , Genoma Humano , Primates/anomalías , Primates/genética , Proteínas de Unión al ADN/genética , Anomalías Congénitas/genética , Páncreas/anomalías
15.
Nat Commun ; 13(1): 6681, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335122

RESUMEN

Transitioning from pluripotency to differentiated cell fates is fundamental to both embryonic development and adult tissue homeostasis. Improving our understanding of this transition would facilitate our ability to manipulate pluripotent cells into tissues for therapeutic use. Here, we show that membrane voltage (Vm) regulates the exit from pluripotency and the onset of germ layer differentiation in the embryo, a process that affects both gastrulation and left-right patterning. By examining candidate genes of congenital heart disease and heterotaxy, we identify KCNH6, a member of the ether-a-go-go class of potassium channels that hyperpolarizes the Vm and thus limits the activation of voltage gated calcium channels, lowering intracellular calcium. In pluripotent embryonic cells, depletion of kcnh6 leads to membrane depolarization, elevation of intracellular calcium levels, and the maintenance of a pluripotent state at the expense of differentiation into ectodermal and myogenic lineages. Using high-resolution temporal transcriptome analysis, we identify the gene regulatory networks downstream of membrane depolarization and calcium signaling and discover that inhibition of the mTOR pathway transitions the pluripotent cell to a differentiated fate. By manipulating Vm using a suite of tools, we establish a bioelectric pathway that regulates pluripotency in vertebrates, including human embryonic stem cells.


Asunto(s)
Células Madre Pluripotentes , Animales , Humanos , Calcio/metabolismo , Potenciales de la Membrana , Diferenciación Celular/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo
16.
Nat Genet ; 54(11): 1615-1620, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36333503

RESUMEN

Gene expression is tightly regulated, with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function1. This silencing is largely controlled by non-coding elements, and their disruption might cause human disease2. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1). HK1 is widely expressed across all tissues except in the liver and pancreatic beta cells and is thus termed a 'disallowed gene' in these specific tissues. We demonstrated that the variants result in a loss of repression of HK1 in pancreatic beta cells, thereby causing insulin secretion and congenital hyperinsulinism. Using epigenomic data accessed from public repositories, we demonstrated that these variants reside within a regulatory region that we determine to be critical for cell-specific silencing. Importantly, this has revealed a disease mechanism for non-coding variants that cause inappropriate expression of a disallowed gene.


Asunto(s)
Hiperinsulinismo Congénito , Células Secretoras de Insulina , Humanos , Hexoquinasa/genética , Hexoquinasa/metabolismo , Hiperinsulinismo Congénito/genética , Hiperinsulinismo Congénito/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética
17.
J Virol ; 83(6): 2429-35, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19116259

RESUMEN

Mammalian genomes harbor a large number of retroviral elements acquired as germ line insertions during evolution. Although many of the endogenous retroviruses are defective, several contain one or more intact viral genes that are expressed under certain physiological or pathological conditions. This is true of the endogenous polytropic retroviruses that generate recombinant polytropic murine leukemia viruses (MuLVs). In these recombinants the env gene sequences of exogenous ecotropic MuLVs are replaced with env gene sequences from an endogenous polytropic retrovirus. Although replication-competent endogenous polytropic retroviruses have not been observed, the recombinant polytropic viruses are capable of replicating in numerous species. Recombination occurs during reverse transcription of a virion RNA heterodimer comprised of an RNA transcript from an endogenous polytropic virus and an RNA transcript from an exogenous ecotropic MuLV RNA. It is possible that homodimers corresponding to two full-length endogenous RNA genomes are also packaged. Thus, infection by an exogenous virus may result not only in recombination with endogenous sequences, but also in the mobilization of complete endogenous retrovirus genomes via pseudotyping within exogenous retroviral virions. We report that the infection of mice with an ecotropic virus results in pseudotyping of intact endogenous viruses that have not undergone recombination. The endogenous retroviruses infect and are integrated into target cell genomes and subsequently replicate and spread as pseudotyped viruses. The mobilization of endogenous retroviruses upon infection with an exogenous retrovirus may represent a major interaction of exogenous retroviruses with endogenous retroviruses and may have profound effects on the pathogenicity of retroviral infections.


Asunto(s)
Retrovirus Endógenos/crecimiento & desarrollo , Virus de la Leucemia Murina/crecimiento & desarrollo , Ensamble de Virus , Animales , Línea Celular , ADN Viral/química , ADN Viral/genética , Retrovirus Endógenos/fisiología , Virus de la Leucemia Murina/fisiología , Ratones , Datos de Secuencia Molecular , Recombinación Genética , Análisis de Secuencia de ADN
18.
J Theor Biol ; 262(3): 452-70, 2010 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-19833137

RESUMEN

A potential mechanism that allows T cells to reliably discriminate pMHC ligands involves an interplay between kinetic proofreading, negative feedback and a destruction of this negative feedback. We analyse a detailed model of these mechanisms which involves the TCR, SHP1 and ERK. We discover that the behaviour of pSHP1 negative feedback is of primary importance, and particularly the influence of a kinetic proofreading base negative feedback state on pSHP1 dynamics. The CD8 co-receptor is shown to benefit from a kinetic proofreading locking mechanism and is able to overcome pSHP1 negative influences to sensitise a T cell.


Asunto(s)
Modelos Inmunológicos , Transducción de Señal/inmunología , Linfocitos T/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Simulación por Computador , Retroalimentación Fisiológica , Humanos , Cinética , Sistema de Señalización de MAP Quinasas/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/enzimología , Factores de Tiempo
19.
Transcription ; 11(5): 236-240, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33054514

RESUMEN

Chromatin accessibility is generally perceived as a common property of active regulatory elements where transcription factors are recruited via DNA-specific interactions and other physico-chemical properties to regulate gene transcription. Recent work in the context of mitosis provides less trivial and potentially more interesting relationships than previously anticipated.


Asunto(s)
Cromatina/genética , Mitosis/genética , Factores de Transcripción/genética , Animales , Sitios de Unión/genética , Cromatina/metabolismo , Humanos , Factores de Transcripción/metabolismo
20.
Cell Death Differ ; 27(10): 2872-2887, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32355182

RESUMEN

Ribosome biogenesis inhibition causes cell cycle arrest and apoptosis through the activation of tumor suppressor-dependent surveillance pathways. These responses are exacerbated in cancer cells, suggesting that targeting ribosome synthesis may be beneficial to patients. Here, we characterize the effect of the loss-of-function of Notchless (Nle), an essential actor of ribosome biogenesis, on the intestinal epithelium undergoing tumor initiation due to acute Apc loss-of-function. We show that ribosome biogenesis dysfunction strongly alleviates Wnt-driven tumor initiation by restoring cell cycle exit and differentiation in Apc-deficient progenitors. Conversely Wnt hyperactivation attenuates the cellular responses to surveillance pathways activation induced by ribosome biogenesis dysfunction, as proliferation was maintained at control-like levels in the stem cells and progenitors of double mutants. Thus, our data indicate that, while ribosome biogenesis inhibition efficiently reduces cancer cell proliferation in the intestinal epithelium, enhanced resistance of Apc-deficient stem and progenitor cells to ribosome biogenesis defects may be an important concern when using a therapeutic strategy targeting ribosome production for the treatment of Wnt-dependent tumorigenesis.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/fisiología , Transformación Celular Neoplásica , Mucosa Intestinal , Proteínas de la Membrana/fisiología , Ribosomas/metabolismo , Vía de Señalización Wnt , Animales , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Biogénesis de Organelos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA