Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hepatology ; 52(3): 975-86, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20607690

RESUMEN

UNLABELLED: Overexpression of epidermal growth factor receptor (ErbB1) and/or ErbB2 has been implicated in the pathogenesis of cholangiocarcinoma, suggesting that combined ErbB1/ErbB2 targeting might serve as a target-based therapeutic strategy for this highly lethal cancer. To test this strategy, we investigated targeting with the ErbB1 inhibitor tryphostin AG1517 and the ErbB2 inhibitor tryphostin AG879, in combination and alone, as well as with the dual ErbB1/ErbB2 inhibitor lapatinib, to assess the effectiveness of simultaneous targeting of ErbB1 and ErbB2 signaling over single inhibitor treatments in suppressing cholangiocarcinoma cell growth in vitro and the therapeutic efficacy of lapatinib in vivo. Our in vitro studies were carried out using rat (BDEneu and C611B) and human (HuCCT1 and TFK1) cholangiocarcinoma cell lines. The efficacy of lapatinib to significantly suppress liver tumor growth was tested in an orthotopic, syngeneic rat model of intrahepatic cholangiocarcinoma progression. Our results demonstrated that simultaneous targeting of ErbB1 and ErbB2 signaling was significantly more effective in suppressing the in vitro growth of both rat and human cholangiocarcinoma cells than individual receptor targeting. Lapatinib was an even more potent inhibitor of cholangiocarcinoma cell growth and inducer of apoptosis than either tryphostin when tested in vitro against these respective cholangiocarcinoma cell lines, regardless of differences in their levels of ErbB1 or ErbB2 protein expression and/or mechanism of activation. Lapatinib treatment also produced a significant suppression of intrahepatic cholangiocarcinoma growth when administered early to rats, but was without effect in inhibiting liver tumor growth in rats with more advanced tumors. CONCLUSION: Our findings suggest that simultaneous targeting of ErbB1 and ErbB2 could be a potentially selective strategy for cholangiocarcinoma therapy, but is likely to be ineffective by itself against advanced cancer.


Asunto(s)
Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos , Colangiocarcinoma/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Quinazolinas/uso terapéutico , Receptor ErbB-2/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Modelos Animales de Enfermedad , Receptores ErbB/metabolismo , Humanos , Lapatinib , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinas/farmacología , Ratas , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos , Tirfostinos/farmacología , Tirfostinos/uso terapéutico
2.
Mol Cancer ; 9: 8, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20074357

RESUMEN

BACKGROUND: The role of the epidermal growth factor receptor (EGFR) and other receptor tyrosine kinases (RTKs) in provoking biological actions of G protein-coupled receptors (GPCRs) has been one of the most disputed subjects in the field of GPCR signal transduction. The purpose of the current study is to identify EGFR-mediated mechanisms involved in activation of G protein cascades and the downstream transcription factors by lysophosphatidic acid (LPA). RESULTS: In ovarian cancer cells highly responsive to LPA, activation of AP-1 by LPA was suppressed by inhibition of EGFR, an effect that could be reversed by co-stimulation of another receptor tyrosine kinase c-Met with hepatocyte growth factor, indicating that LPA-mediated activation of AP-1 requires activity of a RTK, not necessarily EGFR. Induction of AP-1 components by LPA lied downstream of Gi, G12/13, and Gq. Activation of the effectors of Gi, but not Gq or G12/13 was sensitive to inhibition of EGFR. In contrast, LPA stimulated another prominent transcription factor NF-kappaB via the Gq-PKC pathway in an EGFR-independent manner. Consistent with the importance of Gi-elicited signals in a plethora of biological processes, LPA-induced cytokine production, cell proliferation, migration and invasion require intact EGFR. CONCLUSIONS: An RTK activity is required for activation of the AP-1 transcription factor and other Gi-dependent cellular responses to LPA. In contrast, activation of G12/13, Gq and Gq-elicited NF-kappaB by LPA is independent of such an input. These results provide a novel insight into the role of RTK in GPCR signal transduction and biological functions.


Asunto(s)
Receptores ErbB/metabolismo , Proteínas de Unión al GTP/metabolismo , Lisofosfolípidos/farmacología , FN-kappa B/metabolismo , Factor de Transcripción AP-1/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Femenino , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Interleucina-8/biosíntesis , Invasividad Neoplásica , Fosfotirosina/metabolismo
3.
Exp Mol Pathol ; 89(3): 227-35, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20816680

RESUMEN

Previously, we described an orthotopic cholangiocarcinoma model based on bile duct inoculation of spontaneously-transformed low grade malignant rat BDE1 cholangiocytes (BDEsp cells) compared to high grade malignant erbB-2/neu- transformed BDE1 cholangiocytes (BDEneu cells) into the livers of syngeneic rats, which closely mimics clinical features of early versus advanced stages of the human cancer. We now used gene expression microarray together with quantitative real-time RT-PCR to profile genes differentially expressed in highly tumorigenic BDEneu cells and corresponding tumors compared to less aggressive tumorigenic BDEsp cells and tumors. Genes identified as being commonly overexpressed in parent BDEneu cells, tumors, and in a BDEneu tumor-derived cholangiocarcinoma cell line included Sox17, Krt20, Erbb2, and Sphk1 when respectively compared to BDEsp cells, tumors, and tumor-derived BDEsp cholangiocarcinoma cells. Muc1 was also prominently overexpressed in BDEneu cells and tumor-derived cholangiocarcinoma cells over that expressed in corresponding BDEsp cell lines. Periostin and tenascin-C, which were produced exclusively by cholangiocarcinoma-associated fibroblastic cells, were each significantly overexpressed in BDEneu tumors compared to BDEsp tumors. Interestingly, amphiregulin was representative of a gene found to be significantly underexpressed in vitro in BDEneu cells compared to BDEsp cells, but significantly overexpressed in BDEneu tumors compared to BDEsp tumors, and correlated with BDEneu cholangiocarcinoma progression in vivo. Our data support a unique animal model that recapitulates important molecular features of human cholangiocarcinoma progression, and may serve as a potentially powerful preclinical platform for identifying and rapidly testing novel molecular targeting strategies for cholangiocarcinoma therapy and/or prevention.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Animales , Neoplasias de los Conductos Biliares/patología , Western Blotting , Transformación Celular Neoplásica/genética , Colangiocarcinoma/patología , Análisis por Conglomerados , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Receptor ErbB-2 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Clin Cancer Res ; 15(2): 492-501, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19147754

RESUMEN

PURPOSE: Lysophosphatidic acid (LPA), which is present in ascites of ovarian cancer patients, stimulates expression of vascular endothelial growth factor (VEGF). VEGF is essential for the development and abdominal dissemination of ovarian cancer. We examined how LPA drives VEGF expression to gain a better understanding of tumor angiogenesis under normoxic conditions. EXPERIMENTAL DESIGN: ELISA, Northern blotting, immunoblotting, quantitative PCR, and promoter reporter analysis in combination with small interfering RNA and pharmacologic inhibitors were used to examine LPA-induced VEGF expression and the underlying mechanisms. RESULTS: LPA stimulated expression of multiple VEGF variants. A 123-bp fragment proximal to the transcriptional initiation site was identified to be functional promoter region responsible for the response to LPA. The fragment harbors consensus sites for several transcription factors including c-Myc and Sp-1 but not hypoxia-inducible factor-1. Blockade of Rho, ROCK, or c-Myc reduced LPA-dependent VEGF production and promoter activation, suggesting that the G12/13-Rho-ROCK-c-Myc cascade partially contributes to VEGF induction by LPA. More significantly, the multiple Sp-1 sites within the responsive region of the VEGF promoter were essential for LPA-mediated transcription. LPA induced Sp-1 phosphorylation and DNA-binding and transcriptional activities. The silencing of Sp-1 expression with small interfering RNA or inhibition of Sp-1 with pharmacologic inhibitors blocked VEGF production induced by LPA. CONCLUSIONS: LPA stimulates hypoxia-inducible factor-1-independent VEGF expression to promote tumor angiogenesis through activation of the c-Myc and Sp-1 transcription factors.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Lisofosfolípidos/metabolismo , Neoplasias Ováricas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Transcripción Sp1/fisiología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Biológicos , Neovascularización Patológica , Fosforilación , Regiones Promotoras Genéticas , ARN Interferente Pequeño/metabolismo , Factor A de Crecimiento Endotelial Vascular/química
5.
FASEB J ; 22(8): 2639-51, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18362203

RESUMEN

Emerging evidence suggests that lysophosphatidic acid (LPA) is a physiological regulator of cyclooxygenase-2 (Cox-2) expression. Herein we used ovarian cancer cells as a model to investigate the molecular mechanisms that link the LPA G protein-coupled receptors (GPCRs) to Cox-2 expression. LPA stimulated Cox-2 expression and release of prostaglandins though the LPA(1), LPA(2), and LPA(5) receptors. The effect of LPA involves both transcriptional activation and post-transcriptional enhancement of Cox-2 mRNA stability. The consensus sites for C/EBP in the Cox-2 promoter were essential for transcriptional activation of Cox-2 by LPA. The NF-kappaB and AP-1 transcription factors commonly involved in inducible Cox-2 expression were dispensable. Dominant-negative C/EPBbeta inhibited LPA activation of the Cox-2 promoter and expression. Furthermore, LPA stimulated C/EBPbeta phosphorylation and activity through a novel mechanism integrating GPCR signals and a permissive activity from a receptor tyrosine kinase (RTK). This role of RTK was not consistent with LPA activation of C/EBP through transactivation of RTK, as full activation of RTKs with their own agonists only weakly stimulated C/EBP. In addition to the transcriptional activation, the RNA stabilization protein HuR bound to and protected Cox-2 mRNA in LPA-stimulated cells, indicating an active role for HuR in sustaining Cox-2 induction during physiological responses.


Asunto(s)
Ciclooxigenasa 2/genética , Lisofosfolípidos/farmacología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Ácido Araquidónico/metabolismo , Secuencia de Bases , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Cartilla de ADN/genética , Dinoprostona/biosíntesis , Proteínas ELAV , Proteína 1 Similar a ELAV , Femenino , Humanos , Lisofosfolípidos/metabolismo , Mutagénesis Sitio-Dirigida , Fosforilación/efectos de los fármacos , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Eliminación de Secuencia , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos
6.
Oncoscience ; 1(11): 725-737, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25593999

RESUMEN

Little is known about the molecular pathways regulating poor differentiation and invasion of head and neck squamous cell carcinoma (HNSCC). In the present study, we aimed to determine the role of MDA-9/Syntenin, a metastasis associated molecule in HNSCC tumorigenesis. Elevated MDA-9/Syntenin expression was evident in 67% (54/81) primary HNSCC tumors (p=0.001-0.002) and 69% (9/13) pre-neoplastic tissues (p=0.02-0.03). MDA-9/Syntenin overexpression was associated with the stage (p=0.001), grade (p=0.001) and lymph node metastasis (p=0.0001). Silencing of MDA-9/Syntenin in 3 poorly differentiated HNSCC cell lines induced squamous epithelial cell differentiation, disrupted angiogenesis and reduced tumor growth in vitro and in vivo. We confirmed SPRR1B and VEGFR1 as the key molecular targets of MDA-9/Syntenin on influencing HNSCC differentiation and angiogenesis respectively. MDA-9/Syntenin disrupted SPRR1B expression interacting through its PDZ1 domain and altered VEGFR1 expression in vitro and in vivo. VEGFR1 co-localized with MDA-9/Syntenin in HNSCC cell lines and primary tumor. Downregulation of growth regulatory molecules CyclinD1, CDK4, STAT3, PI3K and CTNNB1 was also evident in the MDA-9/Syntenin depleted cells, which was reversed following over-expression of MDA-9/Syntenin in immortalized oral epithelial cells. Our results suggest that early induction of MDA-9/Syntenin expression influences HNSCC progression and should be further evaluated for potential biomarker development.

7.
Front Biosci (Landmark Ed) ; 17(1): 1-15, 2012 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-22201728

RESUMEN

Melanoma differentiation associated gene-9 (MDA-9), synonymous with syntenin, is an adapter protein that provides a central role in regulating cell-cell and cell-matrix adhesion. MDA-9/syntenin transduces signals from the cell-surface to the interior through its interaction with a plethora of additional proteins and actively participates in intracellular trafficking and cell-surface targeting, synaptic transmission, and axonal outgrowth. Recent studies demarcate a seminal role of MDA-9/syntenin in cancer metastasis. In the context of melanoma, MDA-9/syntenin functions as a positive regulator of melanoma progression and metastasis through interactions with c-Src and promotes the formation of an active FAK/c-Src signaling complex leading to NF-k B and matrix metalloproteinase (MMP) activation. The present review provides a current perspective of our understanding of the important features of MDA-9/syntenin and its significant role in tumor cell metastasis with special focus on molecular mechanism of action.


Asunto(s)
Melanoma/secundario , Sinteninas/fisiología , Precursores Enzimáticos/metabolismo , Quinasa 1 de Adhesión Focal/química , Quinasa 1 de Adhesión Focal/metabolismo , Gelatinasas/metabolismo , Humanos , Melanoma/patología , Melanoma/fisiopatología , Modelos Biológicos , Complejos Multiproteicos/química , Sistema Nervioso/fisiopatología , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas pp60(c-src)/química , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transducción de Señal , Sindecanos/metabolismo , Sinteninas/química , Sinteninas/genética , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
8.
Anticancer Agents Med Chem ; 12(9): 1143-55, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22931411

RESUMEN

Structure-based modeling combined with rational drug design, and high throughput screening approaches offer significant potential for identifying and developing lead compounds with therapeutic potential. The present review focuses on these two approaches using explicit examples based on specific derivatives of Gossypol generated through rational design and applications of a cancer-specificpromoter derived from Progression Elevated Gene-3. The Gossypol derivative Sabutoclax (BI-97C1) displays potent anti-tumor activity against a diverse spectrum of human tumors. The model of the docked structure of Gossypol bound to Bcl-XL provided a virtual structure-activity-relationship where appropriate modifications were predicted on a rational basis. These structure-based studies led to the isolation of Sabutoclax, an optically pure isomer of Apogossypol displaying superior efficacy and reduced toxicity. These studies illustrate the power of combining structure-based modeling with rational design to predict appropriate derivatives of lead compounds to be empirically tested and evaluated for bioactivity. Another approach to cancer drug discovery utilizes a cancer-specific promoter as readouts of the transformed state. The promoter region of Progression Elevated Gene-3 is such a promoter with cancer-specific activity. The specificity of this promoter has been exploited as a means of constructing cancer terminator viruses that selectively kill cancer cells and as a systemic imaging modality that specifically visualizes in vivo cancer growth with no background from normal tissues. Screening of small molecule inhibitors that suppress the Progression Elevated Gene-3-promoter may provide relevant lead compounds for cancer therapy that can be combined with further structure-based approaches leading to the development of novel compounds for cancer therapy.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Gosipol/análogos & derivados , Gosipol/farmacología , Neoplasias/tratamiento farmacológico , Animales , Ensayos de Selección de Medicamentos Antitumorales/economía , Ensayos Analíticos de Alto Rendimiento , Humanos , Neoplasias/genética , Regiones Promotoras Genéticas/efectos de los fármacos
9.
Expert Opin Investig Drugs ; 20(10): 1397-411, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21851287

RESUMEN

INTRODUCTION: Human cancers are genetically and epigenetically heterogeneous and have the capacity to commandeer a variety of cellular processes to aid in their survival, growth and resistance to therapy. One strategy is to overexpress proteins that suppress apoptosis, such as the Bcl-2 family protein Mcl-1. The Mcl-1 protein plays a pivotal role in protecting cells from apoptosis and is overexpressed in a variety of human cancers. AREAS COVERED: Targeting Mcl-1 for extinction in these cancers, using genetic and pharmacological approaches, represents a potentially effectual means of developing new efficacious cancer therapeutics. Here we review the multiple strategies that have been employed in targeting this fundamental protein, as well as the significant potential these targeting agents provide in not only suppressing cancer growth, but also in reversing resistance to conventional cancer treatments. EXPERT OPINION: We discuss the potential issues that arise in targeting Mcl-1 and other Bcl-2 anti-apoptotic proteins, as well problems with acquired resistance. The application of combinatorial approaches that involve inhibiting Mcl-1 and manipulation of additional signaling pathways to enhance therapeutic outcomes is also highlighted. The ability to specifically inhibit key genetic/epigenetic elements and biochemical pathways that maintain the tumor state represent a viable approach for developing rationally based, effective cancer therapies.


Asunto(s)
Antineoplásicos/farmacología , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica , Diseño de Fármacos , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Neoplasias/metabolismo , Neoplasias/fisiopatología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA