RESUMEN
BACKGROUND: The role of alterations in gut microbiota composition (termed dysbiosis) has been implicated in the pathobiology of depressive symptoms; however, evidence remains limited. This cross-sectional pilot study is aimed at exploring whether depressive symptom scores changed during neoadjuvant chemotherapy and radiation therapy to treat rectal cancer, and if gut microbial taxa abundances and predicted functional pathways correlate with depressive symptoms at the end of chemotherapy and radiation therapy. METHODS: 40 newly diagnosed rectal cancer patients (ages 28-81; 23 males) were assessed for depressive symptoms using the Hamilton Rating Scale for Depression (HAM-D) and provided stool samples for 16S rRNA sequencing. Gut microbiome data were analyzed using QIIME2, and correlations and regression analyses were performed in R. RESULTS: Participants had significantly higher depressive symptoms at the end as compared to before CRT. The relative abundances of Gemella, Bacillales Family XI, Actinomyces, Streptococcus, Lactococcus, Weissella, and Leuconostocaceae were positively correlated (Spearman's rho = 0.42 to 0.32), while Coprobacter, Intestinibacter, Intestimonas, Lachnospiraceae, Phascolarctobacterium, Ruminiclostridium, Ruminococcaceae (UCG-005 and uncultured), Tyzzerella, and Parasutterella (Spearman's rho = -0.43 to - 0.31) were negatively correlated with HAM-D scores. Of the 14 predicted MetaCyc pathways that correlated with depressive symptom scores at the end of CRT, 11 (79%) were associated with biosynthetic pathways. CONCLUSIONS: Significant bacterial taxa and predicted functional pathways correlated with depressive symptoms at the end of chemotherapy and radiation therapy for rectal cancer which warrants further examination and replication of our findings.