Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 28(22): 33307-33317, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114998

RESUMEN

In this work we demonstrate the capability of two gain-switched optically injected semiconductor lasers to perform high-resolution dual-comb spectroscopy. The use of low duty cycle pulse trains to gain switch the lasers, combined with optical injection, allows us to obtain flat-topped optical frequency combs with 350 optical lines (within 10 dB) spaced by 100 MHz. These frequency combs significantly improve the spectral resolution reported so far on dual-comb spectroscopy with gain-switched laser diodes. We evaluate the performance of our system by measuring the transmission profile of an absorption line of H13CN at the C-band, analyzing the attainable signal-to-noise ratio for a range of averaging times.

2.
Opt Express ; 27(6): 9155-9163, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31052724

RESUMEN

We report on the experimental generation of broad and flat optical frequency combs (OFC) in a 1550 nm laser diode using gain switching with pulsed electrical excitation together with optical injection. The combination of both techniques allows the generation of high-quality OFCs at a repetition frequency of 500 MHz, showing a low-noise optical spectrum with unprecedent features in terms of width (108 tones within 10 dB) and flatness (56 tones within 3 dB) in comparison with those previously reported for this modulation frequency. The influence of the injection conditions on the OFC quality is studied. Using these two techniques, it has been possible to reduce the separation between tones, generating high spectral performance OFCs with a repetition rateof 100 MHz.

3.
Opt Express ; 24(18): 21119-33, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27607715

RESUMEN

The ability to observe the Earth's carbon cycles from space provides scientists an important tool to analyze climate change. Current proposed systems are mainly based on pulsed integrated path differential absorption lidar, in which two high energy pulses at different wavelengths interrogate the atmosphere sequentially for its transmission properties and are back-scattered by the ground. In this work an alternative approach based on random modulation single photon counting is proposed and analyzed; this system can take advantage of a less power demanding semiconductor laser in intensity modulated continuous wave operation, benefiting from a better efficiency, reliability and radiation hardness. Our approach is validated via numerical simulations considering current technological readiness, demonstrating its potential to obtain a 1.5 ppm retrieval precision for 50 km averaging with 2.5 W average power in a space-borne scenario. A major limiting factor is the ambient shot noise, if ultra-narrow band filtering technology could be applied, 0.5 ppm retrieval precision would be attainable.

4.
Opt Express ; 19(4): 3284-9, 2011 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-21369150

RESUMEN

We theoretically discuss the impact of the cavity configuration on the possible longitudinal mode multistability in homogeneously broadened lasers. Our analysis is based on the most general form of a Travelling-Wave Model for which we present a method that allows us to evaluate the monochromatic solutions as well as their eigenvalue spectrum. We find, in agreement with recent experimental reports, that multistability is more easily reached in Ring than in Fabry-Pérot cavities which we attribute to the different amount of Spatial-Hole Burning in each configuration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA