Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Biochem ; 476(7): 2703-2718, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33666829

RESUMEN

The zinc transporter 8 (ZnT8) plays an essential role in zinc homeostasis inside pancreatic ß cells, its function is related to the stabilization of insulin hexameric form. Genome-wide association studies (GWAS) have established a positive and negative relationship of ZnT8 variants with type 2 diabetes mellitus (T2DM), exposing a dual and controversial role. The first hypotheses about its role in T2DM indicated a higher risk of developing T2DM for loss of function; nevertheless, recent GWAS of ZnT8 loss-of-function mutations in humans have shown protection against T2DM. With regard to the ZnT8 role in T2DM, most studies have focused on rodent models and common high-risk variants; however, considerable differences between human and rodent models have been found and the new approaches have included lower-frequency variants as a tool to clarify gene functions, allowing a better understanding of the disease and offering possible therapeutic targets. Therefore, this review will discuss the physiological effects of the ZnT8 variants associated with a major and lower risk of T2DM, emphasizing the low- and rare-frequency variants.


Asunto(s)
Diabetes Mellitus Tipo 2 , Transportador 8 de Zinc , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Transportador 8 de Zinc/deficiencia , Transportador 8 de Zinc/metabolismo
2.
Molecules ; 26(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34500793

RESUMEN

The hyaluronic acid (HA) global market growth can be attributed to its use in medical, cosmetic, and pharmaceutical applications; thus, it is important to have validated, analytical methods to ensure confidence and security of its use (and to save time and resources). In this work, a size-exclusion chromatography method (HPLC-SEC) was validated to determine the concentration and molecular distribution of HA simultaneously. Analytical curves were developed for concentration and molecular weight in the ranges of 100-1000 mg/L and 0.011-2.200 MDa, respectively. The HPLC-SEC method showed repeatability and reproducibility greater than 98% and limits of detection and quantification of 12 and 42 mg/L, respectively, and was successfully applied to the analysis of HA from a bacterial culture, as well as cosmetic, and pharmaceutical products.


Asunto(s)
Cromatografía en Gel , Ácido Hialurónico/análisis , Peso Molecular , Tamaño de la Partícula
3.
Exp Parasitol ; 201: 26-33, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31029699

RESUMEN

The cattle tick Rhipicephalus (Boophilus) microplus is one of the most important ectoparasites for livestock in tropical and subtropical areas around the world. This tick economically impacts cattle production by reducing weight gain and milk production. Moreover, it is a vector of pathogens causing diseases such as babesiosis and anaplasmosis. Conventional tick control relies mainly on the use of chemical acaricides; however, their intensive use has led to the rapid appearance of resistant tick populations. It is therefore necessary to look for alternative tick control products. In that sense, plant extracts might represent a promising source of new acaricides. Previously, we reported a significant acaricide effect of essential oils from selected plant species. In the present study, we used a mixture design approach to develop phyto-formulations by combining individual essential oils. We produced several mixtures at 10% containing different proportions of individual essential oils (ranging from 0 to 1) from cinnamon (Cinnamomum zeylanicum), cumin (Cuminum cyminum) and allspice (Pimenta dioica) and tested their acaricidal activity against R. microplus ticks by means of larval packet test (LPT) and adult immersion test (AIT) assays. The optimal mixture predicted against R. microplus was composed of 66%, 17% and 17% of essential oils from C. zeylanicum, C. cyminum and P. dioica, respectively. We generated an estimated response surface contour plot that estimates 80%-100% acaricidal efficacy. In the optimal mixture 34 compounds were identified, which represent 98.65% of the total composition, with cinnamaldehyde (37.77%), ß-caryophyllene (13.92%), methyl eugenol (12.27%) and cuminaldehyde (8.99%) being the major components. Next, we developed emulsions by combining the optimal mixture with several surfactants and determined particle size, Zeta potential, stability and bioactivity. Emulsions containing 2% and 5% Tween 20 or Tween 80 remain stable after 14 days at 54 °C. Finally, optimized emulsion retained a high acaricidal activity against larval and adult R. microplus ticks. Taken together, our findings showed the usefulness of mixture design method for the development of essential oil mixtures with potent acaricidal activity. These formulations have the potential to successfully control tick infestations.


Asunto(s)
Enfermedades de los Bovinos/prevención & control , Aceites Volátiles , Extractos Vegetales , Rhipicephalus , Control de Ácaros y Garrapatas/métodos , Infestaciones por Garrapatas/veterinaria , Acaricidas , Análisis de Varianza , Animales , Vectores Arácnidos , Bovinos , Enfermedades de los Bovinos/parasitología , Cinnamomum zeylanicum/química , Mezclas Complejas/química , Cuminum/química , Emulsiones/química , Femenino , Frutas/química , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles/química , Pimenta/química , Extractos Vegetales/química , Semillas/química , Infestaciones por Garrapatas/prevención & control
4.
Plant Foods Hum Nutr ; 73(1): 34-39, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29417384

RESUMEN

Obesity affects millions of people worldwide, constituting a public health problem associated with premature mortality. Agave fructans decrease fat mass, body and liver weight, and generate satiety in rodents. In the present study the effects of agave fructans on weight control, lipid profile, and physical tolerability were evaluated in obese people. Twenty-eight obese volunteers were randomly divided into two groups. In the first group, 96 mg/bw of agave fructans was administered for 12 weeks; in the second group, maltodextrin as a placebo was administered for 12 weeks. All participants consumed a low-calorie diet of 1500 kcal/day. Anthropometric and biochemical measurements were taken at baseline and at the end of the study. The body mass index (BMI) of the agave fructans treated group was reduced significantly from the baseline to the final measurements. Hip and waist circumferences decreased statistically in both groups. A decrease of 10% in total body fat was observed in the agave fructans treated group, resulting in a statistically significant difference in the final versus baseline measurements between the Agave fructans treated group and the placebo treated group. Triglycerides were reduced significantly in the agave fructans treated group. Glucose values did not change in either group. Agave fructans intake was safe and well tolerated throughout the study. The results showed that the ingestion of agave fructans enhanced the decrease in BMI, the decrease in total body fat, and the decrease in triglycerides in obese individuals who consume a low-calorie diet.


Asunto(s)
Agave/química , Fármacos Antiobesidad/farmacología , Fructanos/farmacología , Lípidos/sangre , Obesidad/tratamiento farmacológico , Tejido Adiposo/efectos de los fármacos , Adolescente , Adulto , Índice de Masa Corporal , Restricción Calórica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/sangre , Triglicéridos/sangre
5.
Virol J ; 13(1): 196, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27894314

RESUMEN

BACKGROUND: Assembly of recombinant capsid proteins into virus-like particles (VLPs) still represents an interesting challenge in virus-based nanotechnologies. The structure of VLPs has gained importance for the development and design of new adjuvants and antigen carriers. The potential of Tobacco etch virus capsid protein (TEV CP) as adjuvant has not been evaluated to date. FINDINGS: Two constructs for TEV CP expression in Escherichia coli were generated: a wild-type version (TEV-CP) and a C-terminal hexahistidine (His)-tagged version (His-TEV-CP). Although both versions were expressed in the soluble fraction of E. coli lysates, only His-TEV-CP self-assembled into micrometric flexuous filamentous VLPs. In addition, the His-tag enabled high yields and facilitated purification of TEV VLPs. These TEV VLPs elicited broader IgG2-specific antibody response against a novel porcine reproductive and respiratory syndrome virus (PRRSV) protein when compared to the potent IgG1 response induced by the protein alone. CONCLUSIONS: His-TEV CP was purified by immobilized metal affinity chromatography and assembled into VLPs, some of them reaching 2-µm length. TEV VLPs administered along with PRRSV chimeric protein changed the IgG2/IgG1 ratio against the chimeric protein, suggesting that TEV CP can modulate the immune response against a soluble antigen.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Antivirales/sangre , Proteínas de la Cápside/administración & dosificación , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Potyvirus/inmunología , Vacunas Virales/inmunología , Virosomas/administración & dosificación , Citoesqueleto de Actina/metabolismo , Adyuvantes Inmunológicos/metabolismo , Proteínas de la Cápside/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Inmunoglobulina G/sangre , Multimerización de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Virosomas/metabolismo
6.
Parasitology ; 143(13): 1802-1809, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27609093

RESUMEN

The cattle tick Rhipicephalus (Boophilus) microplus is a hematophagous ectoparasite of major importance for the livestock industry. It shows a remarkable ability to survive over long periods without feeding. However, the mechanisms used to endure long-term starvation are poorly understood. It is believed that autophagy, a process of intracellular protein degradation, may play a significant role to confront adverse environmental conditions. To advance our understanding of autophagy in R. microplus, in the present study we report the molecular characterization of three autophagy-related (ATG) genes, namely, RmATG3, RmATG4 and RmATG6, as well as their expression profiles in different developmental stages and organs of the parasite. The deduced amino acid sequences derived from the characterized gene sequences were subjected to Basic Local Alignment Search Tool analysis. The testing produced significant alignments with respective ATG proteins from Haemaphysalis longicornis and Ixodes scapularis ticks. Real-time polymerase chain reaction assays revealed that RmATG4 and RmATG6 transcripts were elevated in egg and ovary tissue, when compared with larva and midgut samples, while RmATG3 expression in midgut was 2-fold higher than in egg, larva and ovary samples.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Perfilación de la Expresión Génica , Rhipicephalus/embriología , Rhipicephalus/genética , Animales , Larva/genética , Larva/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa , Cigoto/crecimiento & desarrollo
7.
Future Oncol ; 10(8): 1501-13, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25052758

RESUMEN

Considerable efforts have been undertaken to produce an effective screening method to reduce lung cancer mortality. Imaging tools such as low-dose computed tomography has shown an increase in the detection of early disease and a reduction in the rate of death. This screening modality has, however, several limitations, such as overdiagnosis and a high rate of false positives. Therefore, new screening methods, such as the use of circulating protein biomarkers, have emerged as an option that could complement imaging studies. In this review, current imaging techniques applied to lung cancer screening protocols are presented, as well as up-to-date status of circulating protein biomarker panels that may improve lung cancer diagnosis. Additionally, diverse statistical and artificial intelligence tools applied to the design and optimization of these panels are discussed along with the presentation of two commercially available blood tests recently developed to help detect lung cancer early.


Asunto(s)
Biomarcadores/sangre , Proteínas Sanguíneas , Detección Precoz del Cáncer , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico , Diagnóstico por Imagen/métodos , Detección Precoz del Cáncer/métodos , Humanos , Juego de Reactivos para Diagnóstico , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
8.
ScientificWorldJournal ; 2014: 121760, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25587557

RESUMEN

Type 2 diabetes mellitus is one of the most frequent causes of death in Mexico, characterized by chronic hyperglycemia. One alternative strategy for this metabolic abnormality is inhibiting the enzymes responsible for the metabolism of carbohydrates. We evaluated whether the aqueous Citrus limetta peel extract could inhibit the metabolism of carbohydrates. We found that this extract inhibited primarily the enzyme α-amylase by 49.6% at a concentration of 20 mg/mL and to a lesser extent the enzyme α-glucosidase with an inhibition of 28.2% at the same concentration. This inhibition is likely due to the high polyphenol content in the Citrus limetta peel (19.1 mg GAE/g). Antioxidant activity of the Citrus limetta peel demonstrated dose-dependent antioxidant activity, varying from 6.5% at 1.125 mg/mL to 42.5% at 20 mg/mL. The study of these polyphenolic compounds having both antihyperglycemic and antioxidant activities may provide a new approach to the management of type 2 diabetes mellitus.


Asunto(s)
Citrus/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , alfa-Amilasas/antagonistas & inhibidores , Antioxidantes/administración & dosificación , Antioxidantes/química , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/patología , México , Extractos Vegetales/química , Polifenoles/administración & dosificación , Polifenoles/química
9.
ScientificWorldJournal ; 2014: 784613, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25143991

RESUMEN

Insecticidal activity of essential oil extracted from Morinda lucida was tested on pulse beetle Callosobruchus maculatus, which is a pest that causes serious damage to several pulses. The insecticidal activity was compared with two pesticides, Phostoxin and Primo-ban-20. 120 mixed sex adult C. maculatus were introduced, along with 30 g of cowpeas. Four concentrations (0.40, 0.20, 0.10, and 0.05 µg/mL) of the M. lucida essential oil, Phostoxin, and Primo-ban-20 were tested. Essential oil chemical composition was analyzed by GC-MS. M. lucida essential oil showed a high toxicological effect, producing 100% mortality after 72 hours at a dose of 0.20 µg/mL. M. lucida essential oil had a potent insecticidal activity (LC90 = 0.629 µg/mL) compared to both pesticides, Phostoxin (LC90 = 0.652 µg/mL) and Primo-ban-20 (LC90 = 0.726 µg/mL), at 24 h. The main compounds of the essential oil were the oxygenated monoterpenoids, 1,8-cineole (43.4%), and α-terpinyl acetate (14.5%), and the monoterpene hydrocarbons, mostly sabinene (8.2%) and ß-pinene (4.0%). Results clearly indicate that M. lucida essential oil can be used as an effective alternative for pulse beetle C. maculatus control, and it could be tested against other pulse beetles affecting Asia and Africa and throughout the world, thereby reducing use of synthetic pesticides.


Asunto(s)
Escarabajos/efectos de los fármacos , Insecticidas/química , Insecticidas/farmacología , Morinda/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Animales , Monoterpenos Bicíclicos , Compuestos Bicíclicos con Puentes/química , Ciclohexanoles/química , Eucaliptol , Cromatografía de Gases y Espectrometría de Masas , Monoterpenos/química
10.
Exp Appl Acarol ; 64(4): 533-42, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25039003

RESUMEN

Rhipicephalus (Boophilus) microplus is an obligate haematophagous arthropod and the major problem for cattle industry due to economic losses it causes. The parasite shows a remarkable adaptability to changing environmental conditions as well as an exceptional ability to survive long-term starvation. This ability has been related to a process of intracellular protein degradation called autophagy. This process in ticks is still poorly understood and only few autophagy-related (ATG) genes have been characterized. The aim of the present study was to examine the ESTs database, BmiGI, of R. microplus searching for ATG homologues. We predicted five putative ATG genes, ATG3, ATG4, ATG6 and two ATG8s. Further characterization led to the identification of RmATG8a and RmATG8b, homologues of GABARAP and MAP1LC3, respectively, and both of them belonging to the ATG8 family. PCR analyses showed that the expression level of RmATG8a and RmATG8b was higher in egg and larval stages when compared to ovary and midgut from adult ticks. This up-regulation coincides with the period in which ticks are in a starvation state, suggesting that autophagy is active in R. microplus.


Asunto(s)
Bovinos/parasitología , Rhipicephalus/genética , Secuencia de Aminoácidos , Animales , Autofagia/genética , Secuencia de Bases , Clonación Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , ARN/química , ARN/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
11.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39204141

RESUMEN

Metabolic syndrome (MetS) comprises a cluster of metabolic risk factors, which include obesity, hypertriglyceridemia, high blood pressure, and insulin resistance. The purpose of this study was to evaluate the effects of laurate-bioconjugated fructans on pro- and anti-inflammatory cytokines in Wistar rats with MetS induced by a high-fat diet. Laurate-bioconjugated fructans were synthesized with agave fructans, immobilized lipase B, and vinyl laureate as the acylant. Groups were fed a standard diet (NORMAL), a high-fat diet (HFD), or a high-fat diet plus laurate-bioconjugated fructans (FL PREV) for 9 weeks. A fourth group received a high-fat diet for 6 weeks, followed by simultaneous exposure to a high-fat diet and laurate-bioconjugated fructans for 3 additional weeks (FL REV). The dose of laurate-bioconjugated fructans was 130 mg/kg. Laurate-bioconjugated fructans reduced food and energy intake, body weight, body mass index, abdominal circumference, adipose tissue, adipocyte area, serum triglycerides, insulin, insulin resistance, and C-reactive protein but they increased IL-10 protein serum levels and mRNA expression. The impact of laurate-bioconjugated fructans on zoometric and metabolic parameters supports their potential as therapeutic agents to improve obesity, obesity comorbidities, insulin resistance, type 2 diabetes mellitus, and MetS.

12.
ScientificWorldJournal ; 2013: 245828, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24298206

RESUMEN

The use of vegetal extracts requires toxicological and genotoxic evaluations to establish and verify safety before being added to human cosmetic, pharmaceutical medicine, or alimentary products. Persea americana seeds have been used in traditional medicine as treatment for several diseases. In this work, the ethanolic seed extract of Persea americana was evaluated with respect to its genotoxic potential through micronucleus assay in rodents. The frequency of micronuclei in groups of animals treated with avocado seed extract showed no differences compared to the negative control (vehicle); therefore, it is considered that the avocado seed extract showed no genotoxic activity in the micronucleus test.


Asunto(s)
Persea/química , Extractos Vegetales/toxicidad , Animales , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Semillas/química , Pruebas de Toxicidad Aguda/métodos
13.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36986511

RESUMEN

Metabolic syndrome is a complex disorder that combines abdominal obesity, dyslipidemia, hypertension, and insulin resistance. Metabolic syndrome affects 25% of the world's population. Agave fructans have shown positive effects on alterations related to metabolic syndrome, so some investigations have focused on their bioconjugation with fatty acids to increase their biological activity. The objective of this work was to evaluate the effect of agave fructan bioconjugates in a rat model with metabolic syndrome. Agave fructans enzymatically bioconjugated (acylated via food-grade lipase catalysis) with propionate or laurate were administered orally for 8 weeks in rats fed a hypercaloric diet. Animals without treatment were used as the control group, as well as animals fed with a standard diet. The data indicate that the group of animals treated with laurate bioconjugates showed a significant decrease in glucose levels, systolic pressure, weight gain, and visceral adipose tissue, as well as a positive effect of pancreatic lipase inhibition. These results allow us to demonstrate the potential of agave bioconjugates, particularly laurate bioconjugates, for the prevention of diseases associated with metabolic syndrome.

14.
Antibiotics (Basel) ; 12(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37508180

RESUMEN

Bacterial biofilms are a significant problem in the food industry, as they are difficult to eradicate and represent a threat to consumer health. Currently, nanoparticles as an alternative to traditional chemical disinfectants have garnered much attention due to their broad-spectrum antibacterial activity and low toxicity. In this study, silver nanoparticles (AgNPs) were synthesized by a biological method using a Jacaranda mimosifolia flower aqueous extract and by a chemical method, and the factors affecting both syntheses were optimized. The nanoparticles were characterized by Ultraviolet-visible (UV-Vis) spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), X-ray diffraction (XRD), and Transmission electron microscopy (TEM) with a spherical and uniform shape. The antibacterial and antibiofilm formation activity was carried out on bacterial species of Pseudomonas aeruginosa and Staphylococcus aureus with the capacity to form biofilm. The minimum inhibitory concentration was 117.5 µg/mL for the chemical and 5.3 µg/mL for the biological nanoparticles. Both types of nanoparticles showed antibiofilm activity in the qualitative Congo red test and in the quantitative microplate test. Antibiofilm activity tests on fresh lettuce showed that biological nanoparticles decreased the population of S. aureus and P. aeruginosa by 0.63 and 2.38 logarithms, respectively, while chemical nanoparticles had little microbial reduction. In conclusion, the biologically synthesized nanoparticles showed greater antibiofilm activity. Therefore, these results suggest their potential application in the formulation of sanitizing products for the food and healthcare industries.

15.
Nutrients ; 14(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35276779

RESUMEN

Ionic calcium can help in the prevention of the process of osseous decalcification. This study aimed to evaluate the physicochemical properties and toxic effects of ionic calcium-fiber supplement (ICa+) and its impact on bone health preservation in mice C57/BL6 fed a calcium-deficient diet. Physicochemical properties include FTIR, apparent calcium solubility estimated by the calcium ratio obtained by ionization chromatography and atomic absorption. In vitro genotoxicity and cytotoxicity of the ICa+ were assessed. Twenty-five 7-week-old C57/BL6 mice were fed calcium-free diet (CFD) or CFD plus CaCO3 (1.33 mg Ca) or CFD plus ICa+ (1.33-6.66 mg Ca) for six weeks. After that, bone mass and microstructure parameters were assessed. Histological staining was performed to determine calcium deposits. ICa+ (100%) exhibited an apparent calcium solubility higher than CaCO3 (12.3%). ICa+ showed no cytotoxic and genotoxic in vitro activities. Histomorphometry analysis showed that the ICa+ treated group displayed a higher trabecular number than the trabecular space. Also, the ratio BV/TV was increased compared with all treatments. Ionic calcium-fiber supplementation prevents bone deterioration compared to mice fed a calcium-deficient diet.


Asunto(s)
Trastornos del Metabolismo del Calcio , Calcio de la Dieta , Animales , Densidad Ósea , Calcio , Calcio de la Dieta/farmacología , Suplementos Dietéticos , Ratones
16.
Materials (Basel) ; 15(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36013835

RESUMEN

Silver nanoparticles (AgNPs) synthesized with plants are widely used in different industries, such as the medical, industrial, and food industries; however, their hazards and risks remain unclear. Here, we aimed to evaluate the toxicological effects of AgNPs in both in vitro and in vivo models. Previously, we developed and characterized green synthesized AgNPs based on Stenocereus queretaroensis (S. queretaroensis). The present study evaluates the toxicity of these AgNPs through cytotoxicity and mutagenicity tests in vitro, as well as genotoxicity tests, including the evaluation of acute oral, dermal, and inhalation toxicity, along with dermal and ocular irritation, in vivo, according to guidelines of The Organization for Economic Co-operation and Development (OECD). We evaluated cell cytotoxicity in L929 cells, and the half-maximal inhibitory concentration was 134.76 µg/mL. AgNPs did not cause genotoxic or mutagenic effects. Furthermore, in vivo oral, dermal, and acute inhalation toxicity results did not show any adverse effects or mortality in the test animals, and after the dermal and ocular irritation assessments, the in vivo models did not exhibit irritation or corrosion. Therefore, the results show that these previously synthesized S. queretaroensis AgNPs do not represent a risk at the tested concentrations; however, little is known about the effects that AgNPs induce on physiological systems or the possible risk following long-term exposure.

17.
Saudi J Biol Sci ; 29(5): 3830-3837, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35844370

RESUMEN

An inflammation response occurs when the body reacts to exogenous and endo enous noxious stimuli, and it helps the body respond to infection and repair tissues, adapt to stress, and remove dead or damaged cells. Anti-inflammatory drugs such as non-steroidal anti-inflammatory drugs are traditionally used to treat inflammation; however, these drugs often cause negative side effects. For this reason, developing and establishing effective alternative medicines for treating many chronic diseases with underlying inflammation is critically dependent on the identification of new organic molecules and bioactive substances. Aromatic and volatile compounds found in essential oils isolated from Pimenta dioica (allspice), Cuminum cyminum (cumin), and Citrus sinensis (sweet orange) are a source of bioactive compounds. Allspice essential oil reduces ear inflammation more than 65% and the anti-inflammatory activity of allspice essential oil is enhanced when combined with sweet orange peel and cumin essential oils, resulting in the reduction of edema inflammation by more than 85%, similar to indomethacin. As an alternative to anti-inflammatory treatment, essential oil mix is pharmacologically safe as it is neither toxic nor mutagenic.

18.
Front Neurosci ; 16: 929590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117620

RESUMEN

Neurodegenerative disorders are a critical affection with a high incidence around the world. Currently, there are no effective treatments to solve this problem. However, the application of mesenchymal stem cells (MSCs) and antioxidants in neurodegenerative diseases has shown to be a promising tool due to their multiple therapeutic effects. This work aimed to evaluate the effects of a combination of resveratrol (RSV) and coenzyme Q10 (CoQ10) on the proliferation and differentiation of MSC and the protector effects in induced damage. To characterize the MSCs, we performed flow cytometry, protocols of cellular differentiation, and immunocytochemistry analysis. The impact of RSV + CoQ10 in proliferation was evaluated by supplementing 2.5 and 10 µM of RSV + CoQ10 in a cellular kinetic for 14 days. Cell viability and lactate dehydrogenase levels (LDH) were also analyzed. The protective effect of RSV + CoQ10 was assessed by supplementing the treatment to damaged MSCs by 1-methyl-4-phenylpyridinium (MPP+); cellular viability, LDH, and reactive oxygen species (ROS) were evaluated.. MSCs expressed the surface markers CD44, CD73, CD90, and CD105 and showed multipotential ability. The combination of RSV + CoQ10 increased the proliferation potential and cell viability and decreased LDH levels. In addition, it reverted the effect of MPP+-induced damage in MSCs to enhance cell viability and decrease LDH and ROS. Finally, RSV + CoQ10 promoted the differentiation of neural progenitors. The combination of RSV + CoQ10 represents a potential treatment to improve MSCs capacities and protect against neurodegenerative damage.

19.
Front Cell Dev Biol ; 10: 947769, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120556

RESUMEN

Glial cells are non-neuronal elements of the nervous system (NS) and play a central role in its development, maturation, and homeostasis. Glial cell interest has increased, leading to the discovery of novel study fields. The CRISPR/Cas system has been widely employed for NS understanding. Its use to study glial cells gives crucial information about their mechanisms and role in the central nervous system (CNS) and neurodegenerative disorders. Furthermore, the increasingly accelerated discovery of genes associated with the multiple implications of glial cells could be studied and complemented with the novel screening methods of high-content and single-cell screens at the genome-scale as Perturb-Seq, CRISP-seq, and CROPseq. Besides, the emerging methods, GESTALT, and LINNAEUS, employed to generate large-scale cell lineage maps have yielded invaluable information about processes involved in neurogenesis. These advances offer new therapeutic approaches to finding critical unanswered questions about glial cells and their fundamental role in the nervous system. Furthermore, they help to better understanding the significance of glial cells and their role in developmental biology.

20.
Materials (Basel) ; 14(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34443066

RESUMEN

The synthesis and application of nanomaterials as antioxidants and cytotoxic agents has increased in recent years. Biological methods go beyond the chemical and physical synthesis that is expensive and not friendly to the environment. Foodborne pathogens and microorganisms causing candidiasis are responsible of 5-10% hospitalized patients. The nutritional properties of the fruit called pitaya, from the Stenocereus queretaroensis species, have been little explored. Therefore, in this study the phytochemical composition of S. queretaroensis peel was evaluated and silver nanoparticles (AgNPs) were synthesized biologically in an environmentally friendly way by S. queretaroensis peel aqueous extract that contains phytochemicals capable of reducing silver nitrate. The antimicrobial activity of the AgNPs was tested by determining the minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and time-kill kinetics. AgNPs were characterized visually, by UV-visible spectroscopy and TEM. FTIR spectroscopy identified metabolites responsible for the AgNPs formation. AgNPs showed potent antimicrobial activity against gram-negative and gram-positive bacteria, against fungi, and a methicillin-resistant strain of S. aureus. MIC and MBC values were as low as 0.078 and 0.156 µg/mL using AgNPs biosynthesized by S. queretaroensis fruit peel and the time kill assay started a log reduction in CFU/mL at 1 × MIC and 2 × MIC. S. queretaroensis-mediated AgNPs could be the basis for the formulation of biofilms for packaging products or as disinfectants for use on different surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA