Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 618(7966): 790-798, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316665

RESUMEN

Psychedelics are a broad class of drugs defined by their ability to induce an altered state of consciousness1,2. These drugs have been used for millennia in both spiritual and medicinal contexts, and a number of recent clinical successes have spurred a renewed interest in developing psychedelic therapies3-9. Nevertheless, a unifying mechanism that can account for these shared phenomenological and therapeutic properties remains unknown. Here we demonstrate in mice that the ability to reopen the social reward learning critical period is a shared property across psychedelic drugs. Notably, the time course of critical period reopening is proportional to the duration of acute subjective effects reported in humans. Furthermore, the ability to reinstate social reward learning in adulthood is paralleled by metaplastic restoration of oxytocin-mediated long-term depression in the nucleus accumbens. Finally, identification of differentially expressed genes in the 'open state' versus the 'closed state' provides evidence that reorganization of the extracellular matrix is a common downstream mechanism underlying psychedelic drug-mediated critical period reopening. Together these results have important implications for the implementation of psychedelics in clinical practice, as well as the design of novel compounds for the treatment of neuropsychiatric disease.


Asunto(s)
Período Crítico Psicológico , Alucinógenos , Aprendizaje , Recompensa , Animales , Humanos , Ratones , Estado de Conciencia/efectos de los fármacos , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Aprendizaje/efectos de los fármacos , Factores de Tiempo , Oxitocina/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos
2.
Learn Mem ; 28(12): 435-439, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34782401

RESUMEN

It is thought that goal-directed control of actions weakens or becomes masked by habits over time. We tested the opposing hypothesis that goal-directed control becomes stronger over time, and that this growth is modulated by the overall action-outcome contiguity. Despite group differences in action-outcome contiguity early in training, rats trained under random and fixed ratio schedules showed equivalent goal-directed control of lever pressing that appeared to grow over time. We confirmed that goal-directed control was maintained after extended training under another type of ratio schedule-continuous reinforcement-using specific satiety and taste aversion devaluation methods. These results add to the growing literature showing that extensive training does not reliably weaken goal-directed control and that it may strengthen it, or at least maintain it.


Asunto(s)
Condicionamiento Operante , Objetivos , Animales , Conducta Animal , Motivación , Ratas , Refuerzo en Psicología
3.
Addict Biol ; 26(2): e12928, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32558119

RESUMEN

Ceftriaxone is an antibiotic that reliably attenuates the reinstatement of cocaine seeking after extinction while preventing the nucleus accumbens (NA) core glutamate efflux that drives reinstatement. However, when rats undergo abstinence without extinction, ceftriaxone attenuates context-primed cocaine seeking but NA core glutamate efflux still increases. Here, we sought to determine if the same would occur when cocaine seeking is prompted by both context and discrete cues (cue-induced seeking) after cocaine abstinence. Male rats self-administered intravenous cocaine accompanied by drug-associated cues (light + tone) for 2 h/day for 14 days. Rats then experienced abstinence with daily handling but no extinction training for 2 weeks. Ceftriaxone (200 mg/kg IP) or vehicle was administered during the last 6 days of abstinence. During a cue-induced cocaine seeking test, microdialysis procedures were conducted. Rats were perfused at the end of the test for later Fos analysis. A separate cohort of rats was infused with the retrograde tracer cholera toxin B in the NA core and underwent the same self-administration and relapse procedures. Ceftriaxone increased baseline glutamate and attenuated both cue-induced cocaine seeking and NA core glutamate efflux during this test. Ceftriaxone reduced Fos expression in regions sending projections to the NA core (prefrontal cortex, basolateral amygdala, ventral tegmental area) and specifically reduced Fos in prelimbic cortex and not infralimbic cortex neurons projecting to the NA core. Thus, when cocaine seeking is induced by drug-associated cues, ceftriaxone is able to attenuate relapse by preventing NA core glutamate efflux, likely through reducing activity in prelimbic NA core-projecting neurons.


Asunto(s)
Ceftriaxona/farmacología , Cocaína/farmacología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Animales , Genes fos/efectos de los fármacos , Masculino , Ratas
4.
iScience ; 27(5): 109652, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38650988

RESUMEN

Dysregulation of the central amygdala is thought to underlie aberrant choice in alcohol use disorder, but the role of central amygdala neural activity during reward choice and consumption is unclear. We recorded central amygdala neurons in male rats as they consumed alcohol or sucrose. We observed activity changes at the time of reward approach, as well as lick-entrained activity during ongoing consumption of both rewards. In choice scenarios where rats could drink sucrose, alcohol, or quinine-adulterated alcohol with or without central amygdala optogenetic stimulation, rats drank more of stimulation-paired options when the two bottles contained identical options. Given a choice among different options, central amygdala stimulation usually enhanced consumption of stimulation-paired rewards. However, optogenetic stimulation during consumption of the less-preferred option, alcohol, was unable to enhance alcohol intake while sucrose was available. These findings indicate that the central amygdala contributes to refining motivated pursuit toward the preferred available option.

5.
Front Pharmacol ; 14: 1132689, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007027

RESUMEN

Polysubstance use (PSU), involves the consumption of more than one drug within a period of time and is prevalent among cocaine users. Ceftriaxone, a beta-lactam antibiotic, reliably attenuates reinstatement of cocaine seeking in pre-clinical models by restoring glutamate homeostasis following cocaine self-administration but fails to do so when rats consume both cocaine and alcohol (cocaine + alcohol PSU). We previously found that cocaine + alcohol PSU rats reinstate cocaine seeking similarly to cocaine-only rats, but demonstrate differences in reinstatement-induced c-Fos expression throughout the reward system, including a lack of change upon ceftriaxone treatment. Here, we used this model to determine if previous findings were caused by tolerance or sensitization to the pharmacological effects of cocaine. Male rats underwent intravenous cocaine self-administration immediately followed by 6 h of home cage access to water or unsweetened alcohol for 12 days. Rats subsequently underwent 10 daily instrumental extinction sessions, during which time they were treated with either vehicle or ceftriaxone. Rats then received a non-contingent cocaine injection and were perfused for later immunohistochemical analysis of c-Fos expression in the reward neurocircuitry. c-Fos expression in the prelimbic cortex correlated with total alcohol intake in PSU rats. There were no effects of either ceftriaxone or PSU on c-Fos expression in the infralimbic cortex, nucleus accumbens core and shell, basolateral amygdala, or ventral tegmental area. These results support the idea that PSU and ceftriaxone alter the neurobiology underlying drug-seeking behavior in the absence of pharmacological tolerance or sensitization to cocaine.

6.
bioRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425773

RESUMEN

The ability to evaluate and select a preferred option among a variety of available offers is an essential aspect of goal-directed behavior. Dysregulation of this valuation process is characteristic of alcohol use disorder, with the central amygdala being implicated in persistent alcohol pursuit. However, the mechanism by which the central amygdala encodes and promotes the motivation to seek and consume alcohol remains unclear. We recorded single-unit activity in male Long-Evans rats as they consumed 10% ethanol or 14.2% sucrose. We observed significant activity at the time of approach to alcohol or sucrose, as well as lick-entrained activity during the ongoing consumption of both alcohol and sucrose. We then evaluated the ability of central amygdala optogenetic manipulation time-locked to consumption to alter ongoing intake of alcohol or sucrose, a preferred non-drug reward. In closed two-choice scenarios where rats could drink only sucrose, alcohol, or quinine-adulterated alcohol with or without central amygdala stimulation, rats drank more of stimulation-paired options. Microstructural analysis of licking patterns suggests these effects were mediated by changes in motivation, not palatability. Given a choice among different options, central amygdala stimulation enhanced consumption if the stimulation was associated with the preferred reward while closed-loop inhibition only decreased consumption if the options were equally valued. However, optogenetic stimulation during consumption of the less-preferred option, alcohol, was unable to enhance overall alcohol intake while sucrose was available. Collectively, these findings indicate that the central amygdala processes the motivational value of available offers to promote pursuit of the most preferred available option.

7.
Psychopharmacology (Berl) ; 239(12): 3963-3973, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36329194

RESUMEN

RATIONALE: There are no FDA-approved treatments to facilitate recovery from cocaine use disorder. Contingency management offers non-drug reinforcers to encourage abstinence and is effective at reducing drug seeking during treatment, but once discontinued, relapse rates increase. OBJECTIVES: We sought to establish a choice-based rodent model of voluntary abstinence (VA) from cocaine to test the ability of ceftriaxone, an antibiotic consistently shown to prevent relapse to cocaine seeking in rodents, to attenuate relapse after discontinuation of VA, and to investigate relapse-induced neuronal activation via c-Fos expression. METHODS: Male Sprague-Dawley rats self-administered sucrose pellets for 5 days and intravenous cocaine for 12 days. Rats then underwent 14 days of voluntary or forced abstinence. VA sessions entailed the opportunity to choose between sucrose and cocaine delivery in discrete trials (20 trials/day). Ceftriaxone (or vehicle) was administered during the last 7 days of abstinence. During a relapse test, only the cocaine-paired lever was available and presses on the lever delivered cocaine-paired cues. RESULTS: There were more presses on the sucrose lever during VA, but cocaine intake did not decline to zero. Ceftriaxone had no effect on cocaine intake during VA. Neither ceftriaxone nor VA reduced cocaine seeking during the relapse test, and cocaine intake during VA positively correlated with cocaine seeking during the test in vehicle-treated animals. Relapse-induced c-Fos expression was found to be greater in the ventral orbitofrontal cortex following VA. CONCLUSIONS: Sucrose availability leads to a decrease in, but not cessation of, cocaine seeking and a differential engagement of the circuitry underlying relapse.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Masculino , Ratas , Animales , Ratas Sprague-Dawley , Ceftriaxona/farmacología , Individualidad , Extinción Psicológica , Autoadministración , Recurrencia , Señales (Psicología) , Sacarosa/farmacología
8.
Neuropsychopharmacology ; 45(3): 441-450, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266052

RESUMEN

There are currently no FDA-approved medications to reduce cocaine relapse. The majority of preclinical studies aimed at identifying the neurobiology underlying relapse involve the self-administration of cocaine alone, whereas many, if not a majority, of cocaine users engage in polysubstance use. Here we developed a rat model of sequential cocaine and alcohol self-administration to test the hypothesis that this combination produces distinct neuroadaptations relative to those produced by cocaine alone. Male rats underwent intravenous cocaine self-administration (2 h/day) followed by 6 h access to unsweetened alcohol (20% v/v) for 12 days. After extinction training, we assessed surface expression of the glutamate transporter GLT-1 and glutamate efflux in the nucleus accumbens (NA) core during the reinstatement of cocaine-seeking. We also tested the ability of ceftriaxone to attenuate the reinstatement of cocaine-seeking and assessed reinstatement-induced Fos expression in several regions critical for reinstatement. Alcohol consumption did not alter cocaine intake, nor did access to cocaine alter alcohol consumption. However, we noted significant changes in glutamate homeostasis in the NA core of cocaine + alcohol rats relative to rats consuming cocaine alone, such as increased surface GLT-1 expression and a lack of increase in glutamate efflux during reinstatement of cocaine-seeking. A history of cocaine + alcohol also altered patterns of reinstatement-induced Fos expression. These changes likely account for the inability of ceftriaxone to attenuate cocaine relapse in cocaine + alcohol rats, while it does so in rats consuming only cocaine. As such glutamate neuroadaptations are targeted by medications to reduce cocaine relapse, preclinical models should consider polysubstance use.


Asunto(s)
Cocaína/administración & dosificación , Etanol/administración & dosificación , Homeostasis/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/metabolismo , Animales , Cocaína/efectos adversos , Trastornos Relacionados con Cocaína/metabolismo , Etanol/efectos adversos , Homeostasis/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Autoadministración
9.
Neurosci Lett ; 674: 132-135, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29571824

RESUMEN

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are novel tools for the dissection of circuitry mediating behavior and neural function. Designer receptors based on the muscarinic M3 and M4 subtypes were designed to be activated by clozapine-N-oxide (CNO), a ligand previously shown to be an inert metabolite of clozapine. However, recent work in rats has shown that CNO is reverse metabolized to its parent compound. Furthermore, CNO administration (5 mg/kg IP) attenuates amphetamine-induced locomotion and the evoked dopamine response that accompanies it. As these systems are routinely used to probe the neurocircuitry underlying cocaine-seeking behavior, here we sought to determine whether CNO would have similar effects on cocaine-induced locomotion in rats with a history of cocaine self-administration. In order for muscarinic-based DREADDs to be utilized for the dissection of circuitry underlying behavioral responses to cocaine, the doses of CNO administered to induce DREADD signaling must themselves have no effect on cocaine-induced behavior. Male Sprague-Dawley rats self-administered cocaine (0.35 mg/infusion) for 12 days, followed by 14-21 days of instrumental extinction training. Rats then underwent locomotor testing. CNO (0, 3, or 5 mg/kg) was injected (utilizing a within-subjects design), followed 20 min later by cocaine (10 mg/kg IP). Locomotion was monitored for the following 120 min. We found that the 5, but not the 3 mg/kg, dose of CNO reduced cocaine-induced locomotion. Thus, studies utilizing DREAADs to probe cocaine-induced behavior should consider these findings when choosing a dose of CNO and include non-DREADD CNO controls.


Asunto(s)
Clozapina/análogos & derivados , Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Locomoción/efectos de los fármacos , Animales , Clozapina/administración & dosificación , Condicionamiento Operante/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Extinción Psicológica/efectos de los fármacos , Masculino , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA