Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 16(8): 3524-3533, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31268724

RESUMEN

The use of nanobodies (Nbs) as vehicles in targeted alpha therapy (TAT) has gained great interest because of their excellent properties. They combine high in vivo affinity and specificity of binding with fast kinetics. This research investigates a novel targeted therapy that combines the α-particle emitter astatine-211 (211At) and the anti-HER2 Nb 2Rs15d to selectively target HER2+ cancer cells. Two distinctive radiochemical methodologies are investigated using three different coupling reagents. The first method uses the coupling reagents, N-succinimidyl 4-(1,2-bis-tert-butoxycarbonyl)guanidinomethyl-3-(trimethylstannyl)benzoate (Boc2-SGMTB) and N-succinimidyl-3-(trimethylstannyl)benzoate (m-MeATE), which are both directed to amino groups on the Nb, resulting in random conjugation. The second method aims at obtaining a homogeneous tracer population, via a site-specific conjugation of the N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide (MSB) reagent onto the carboxyl-terminal cysteine of the Nb. The resulting radioconjugates are evaluated in vitro and in vivo. 2Rs15d is labeled with 211At using Boc2-SGMTB, m-MeATE, and MSB. After astatination and purification, the binding specificity of the radioconjugates is validated on HER2+ cells, followed by an in vivo biodistribution assessment in SKOV-3 xenografted mice. α-camera imaging is performed to determine uptake and activity distribution in kidneys/tumors. 2Rs15d astatination resulted in a high radiochemical purity >95% for all radioconjugates. The biodistribution studies of all radioconjugates revealed comparable tumor uptake (higher than 8% ID/g at 1 h). [211At]SAGMB-2Rs15d showed minor uptake in normal tissues. Only in the kidneys, a higher uptake was measured after 1 h, but decreased rapidly after 3 h. Astatinated Nbs consisting of m-MeATE or MSB reagents revealed elevated uptake in lungs and stomach, indicating the presence of released 211At. α-Camera imaging of tumors revealed a homogeneous activity distribution. The radioactivity in the kidneys was initially concentrated in the renal cortex, while after 3 h most radioactivity was measured in the medulla, confirming the fast washout into urine. Changing the reagents for Nb astatination resulted in different in vivo biodistribution profiles, while keeping the targeting moiety identical. Boc2-SGMTB is the preferred reagent for Nb astatination because of its high tumor uptake, its low background signals, and its fast renal excretion. We envision [211At]SAGMB-2Rs15d to be a promising therapeutic agent for TAT and aim toward efficacy evaluation.


Asunto(s)
Astato/administración & dosificación , Inmunoconjugados/administración & dosificación , Neoplasias Ováricas/radioterapia , Receptor ErbB-2/antagonistas & inhibidores , Anticuerpos de Dominio Único/administración & dosificación , Partículas alfa/uso terapéutico , Animales , Astato/química , Astato/farmacocinética , Benzoatos/química , Línea Celular Tumoral , Liberación de Fármacos , Femenino , Humanos , Inmunoconjugados/química , Inmunoconjugados/inmunología , Inmunoconjugados/farmacocinética , Ratones , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Distribución Tisular , Compuestos de Trimetilestaño/química , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Bioconjug Chem ; 27(3): 688-97, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26791409

RESUMEN

Effective treatment of metastasis is a great challenge in the treatment of different types of cancers. Targeted alpha therapy utilizes the short tissue range (50-100 µm) of α particles, making the method suitable for treatment of disseminated occult cancers in the form of microtumors or even single cancer cells. A promising radioactive nuclide for this type of therapy is astatine-211. Astatine-211 attached to tumor-specific antibodies as carrier molecules is a system currently under investigation for use in targeted alpha therapy. In the common radiolabeling procedure, astatine is coupled to the antibody arbitrarily on lysine residues. By instead coupling astatine to disulfide bridges in the antibody structure, the immunoreactivity of the antibody conjugates could possibly be increased. Here, the disulfide-based conjugation was performed using a new coupling reagent, maleimidoethyl 3-(trimethylstannyl)benzamide (MSB), and evaluated for chemical stability in vitro. The immunoconjugates were subsequently astatinated, resulting in both high radiochemical yield and high specific activity. The MSB-conjugate was shown to be stable with a long shelf life prior to the astatination. In a comparison of the in vivo distribution of the new immunoconjugate with other tin-based immunoconjugates in tumor-bearing mice, the MSB conjugation method was found to be a viable option for successful astatine labeling of different monoclonal antibodies.


Asunto(s)
Astato/química , Benzamidas/química , Inmunoconjugados/química , Animales , Ratones , Ratones Endogámicos BALB C
3.
Cancer Biother Radiopharm ; 39(1): 75-81, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38265676

RESUMEN

Background: Real-time quantification of radioligand binding to cells under in vivo-like conditions improves evaluation of clinical potential. Materials and Methods: SKOV-3 tumor cells were grown in a monolayer on a thin glass plate placed in a sealable shallow chamber with a continuous flow of 125I-trastuzumab solution. The time-dependent cell binding was measured using a NaI detector, and the binding parameters were derived by computational analysis. Results: The detection efficiency of 125I was 65 cps/kBq for radioligand bound to the cells. Experiments were analyzed to find the values of kon and koff. The resulting kon was 3.2-7.9 × 104 M-1 s-1 and koff was 0.11-4.2 × 10-5 s-1. Conclusions: Radioligands can be rapidly evaluated by binding to living cells for selection and optimization of radioconjugates for diagnostic and therapeutic purposes.

4.
Med Phys ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38314904

RESUMEN

BACKGROUND: In radiopharmaceutical therapies (RPT) involving beta emitters, absorbed dose (Dabs ) calculations often employ the use of dose voxel kernels (DVK). Such methods are faster and easier to implement than Monte Carlo (MC) simulations. Using DVK methods implies a non-stochastic distribution of particles. This is a valid assumption for betas where thousands to tens of thousands of particles traversing the cell nucleus are required to achieve cell kill. However, alpha particles have linear energy transfers (LET) that are ∼500 times higher than LETs of betas. This results in a significant probability of killing a cell from even a single traversal through its nucleus. Consequently, the activity used for therapy involving alphas is very low, and the use of DVKs for estimating Dabs will generate results that may be erroneous. PURPOSE: This work aims at illustrating how use of DVKs affect the resulting Dabs in small tumors when irradiated with clinically relevant amounts of beta- and alpha-emitters. The results are compared with those from using a Monte Carlo method where the energy deposition from individual tracks is simulated. METHODS: To illustrate the issues associated with DVK for alpha radiopharmaceutical therapies at the microscale, a tumor cluster model was used to compare beta (177 Lu) and alphas (211 At, 225 Ac, and 227 Th) irradiations. We used 103 beta particles and 20 alpha particles per cell, which is within the range of the required number of particle traversals through its nucleus to sterilize a cell. Results from using both methods were presented with Dabs histograms, dose volume histograms, and Dabs error maps. RESULTS: For beta-emitter (177 Lu) irradiating the modeled tumor cluster, resulting Dabs was similar for both DVK and MC methods. For all alpha emitters, the use of DVK led to an overestimation of Dabs when compared to results generated using a MC approach. CONCLUSIONS: Our results demonstrate that the use of DVK methods for alpha emitters can lead to an overestimation in the calculated Dabs . The use of DVKs for therapies involving alpha emitters may therefore not be appropriate when only referring to the mean Dabs metric.

5.
J Nucl Med ; 64(1): 165-172, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35798559

RESUMEN

Intraperitoneal 211At-based targeted α-therapy (TAT) may hold great promise as an adjuvant therapy after surgery and chemotherapy in epithelial ovarian cancer to eradicate any remaining undetectable disease. This implies that it will also be delivered to patients possibly already cured by the primary treatment. An estimate of long-term risks is therefore sought to determine whether the treatment is justified. Methods: Baseline data for risk estimates of α-particle irradiation were collected from published studies on excess cancer induction and mortality for subjects exposed to either 224Ra treatments or Thorotrast contrast agent (25% ThO2 colloid, containing 232Th). Organ dosimetry for 224Ra and Thorotrast irradiation were taken from the literature. These organ-specific risks were then applied to our previously reported dosimetry for intraperitoneal 211At-TAT patients. Results: Risk could be estimated for 10 different organ or organ groups. The calculated excess relative risk per gray (ERR/Gy) could be sorted into 2 groups. The lower-ERR/Gy group, ranging up to a value of approximately 5, included trachea, bronchus, and lung, at 0.52 (95% CI, 0.21-0.82); stomach, at 1.4 (95% CI, -5.0-7.9); lymphoid and hematopoietic system, at 2.17 (95% CI, 1.7-2.7); bone and articular cartilage, at 2.6 (95% CI, 2.0-3.3); breast, at 3.45 (95% CI, -10-17); and colon, at 4.5 (95% CI, -3.5-13). The higher-ERR/Gy group, ranging from approximately 10 to 15, included urinary bladder, at 10.1 (95% CI, 1.4-23); liver, at 14.2 (95% CI, 13-16); kidney, at 14.9 (95% CI, 3.9-26); and lip, oral cavity, and pharynx, at 15.20 (95% CI, 2.73-27.63). Applying a typical candidate patient (female, age 65 y) and correcting for the reference population mortality rate, the total estimated excess mortality for an intraperitoneal 211At-monoclonal antibody treatment amounted to 1.13 per 100 treated. More than half this excess originated from urinary bladder and kidney, 0.29 and 0.34, respectively. Depending on various adjustments in calculation and assumptions on competing risks, excess mortality could range from 0.11 to 1.84 per 100 treated. Conclusion: Published epidemiologic data on lifelong detriment after α-particle irradiation and its dosimetry allowed calculations to estimate the risk for secondary cancer after 211At-based intraperitoneal TAT. Measures to reduce dose to the urinary organs may further decrease the estimated relative low risk for secondary cancer from 211At-monoclonal antibody-based intraperitoneal TAT.


Asunto(s)
Neoplasias Primarias Secundarias , Neoplasias Ováricas , Dióxido de Torio , Humanos , Femenino , Anciano , Radioinmunoterapia/efectos adversos , Factores de Riesgo , Anticuerpos Monoclonales
6.
EJNMMI Phys ; 9(1): 67, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36178531

RESUMEN

BACKGROUND: The aim of this study is to elucidate the difference in absorbed dose (Dabs) patterns in radiopharmaceutical therapies between alpha emitters (225Ac) and beta emitters (177Lu) when targeting cancer-associated fibroblasts (CAF) or tumor cells. Five spherical models with 3 mm diameter were created, representing spherical tumor masses that contain tumor clusters, interspersed with CAFs. The mean distance from a tumor cell to the nearest CAF (Lmean) varied throughout these models from 92 to 1030 µm. Dabs calculations were performed while selecting either CAFs or tumor cells as sources, with Convolution/Superposition with 177Lu and Monte Carlo simulations (GATE) with 225Ac. Analyses were conducted with Dose Volume Histograms and efficacy ratios (ER), which represents the ratio of mean Dabs that is deposited in the target volume. RESULTS: 225Ac is the most optimal radionuclide when CAFs are both targeted and irradiating themselves, as ERs increase from 1.5 to 3.7 when Lmean increases from 92 to 1030 µm. With 177Lu, these numbers vary from 1.2 to 2.7. Conversely, when CAFs are sources and tumors are targets with 225Ac, ERs decreased from 0.8 to 0.1 when Lmean increases from 92 to 1030 µm. With 177Lu, these numbers vary from 0.9 to 0.3 CONCLUSION: When targeting CAFs to irradiate tumors, the efficacy of using 225Ac decreases as the average size of the tumor clusters (or Lmean) increases. In such situations, 177Lu will be more effective than 225Ac when targeting CAFs due to the longer beta particle range.

7.
Front Med (Lausanne) ; 9: 1076210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687417

RESUMEN

Astatine-211 (211At) has physical properties that make it one of the top candidates for use as a radiation source for alpha particle-based radionuclide therapy, also referred to as targeted alpha therapy (TAT). Here, we summarize the main results of the completed clinical trials, further describe ongoing trials, and discuss future prospects.

8.
Transl Oncol ; 14(1): 100873, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32987283

RESUMEN

INTRODUCTION: Antibodies labeled with alpha-emitter astatine-211 have previously shown effective in intraperitoneal (i.p.) treatments of ovarian cancer. In the present work we explore the use of investigational farletuzumab, aimed at the folate receptor alpha. The aim was to evaluate the biodistribution and therapeutic effect of 211At-farletuzumab in in-vitro and in-vivo experiments and, using models for radiation dosimetry, to translate the findings to expected clinical result. The activity concentration used for therapy in mice (170 kBq/mL) was chosen to be in agreement with an activity concentration that is anticipated to be clinically relevant in patients (200 MBq/L). METHODS: For biodistribution, using intravenous injections and mice carrying subcutaneous (s.c.) tumors, the animals were administered either 211At-farletuzumab (n = 16); or with a combination of 125I-farletuzumab and 211At-MX35 (n = 12). At 1, 3, 10 and 22 h, mice were euthanized and s.c.-tumors and organs weighted and measured for radioactivity. To evaluate therapeutic efficacy, mice were inoculated i.p. with 2 × 106 NIH:OVCAR-3 cells. Twelve days later, the treatments were initiated by i.p.-administration. Specific treatment was given by 211At-labeled farletuzumab (group A; n = 22, 170 kBq/mL) which is specific for OVCAR-3 cells. Control treatments were given by either 211At-labeled rituximab which is unspecific for OVCAR-3 (group B; n = 22, 170 kBq/mL), non-radiolabeled farletuzumab (group C; n = 11) or PBS only (group D; n = 8). RESULTS: The biodistribution of 211At-farletuzumab was similar to that with 125I as radiolabel, and also to that of 211At-labeled MX35 antibody. The tumor-free fraction (TFF) of the three control groups were all low (PBS 12%, unlabeled specific farletuzumab 9% and unspecific 211At-rituximab 14%). TFF following treatment with 211At-farletuzumab was 91%. CONCLUSION: The current investigation of intraperitoneal therapy with 211At-farletuzumab, delivered at clinically relevant 211At-mAb radioactivity concentrations and specific activities, showed a 6 to 10-fold increase (treated versus controls) in antitumor efficacy. This observation warrants further clinical testing.

9.
J Liposome Res ; 20(4): 330-40, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20070139

RESUMEN

UNLABELLED: Effective targeting and killing of intraperitoneally disseminated micrometastases remains a challenge. OBJECTIVE/METHODS: In this work, we evaluated the potential of antibody-labeled PEGylated large liposomes as vehicles for direct intraperitoneal (i.p.) drug delivery with the aim to enhance the tumor-to-normal organ ratio and to improve the bioexposure of cancer cells to the delivered therapeutics while shifting the toxicities toward the spleen. These targeted liposomes are designed to combine: (1) specific targeting to and internalization by cancer cells mediated by liposome-conjugated tumor-specific antibodies, (2) slow clearance from the peritoneal cavity, and (3) shift of normal organ toxicities from the liver to the spleen due to their relatively large size. RESULTS: Conjugation of anti-HER2/neu antibodies to the surface of large (approximately 600 nm in diameter) PEGylated liposomes results in fast, specific binding of targeted liposomes to cancer cells in vitro, followed by considerable cellular internalization. In vivo, after i.p. administration, these liposomes exhibit fast, specific binding to i.p. cancerous tumors. Large liposomes are slowly cleared from the peritoneal cavity, and they exhibit increased uptake by the spleen relative to the liver, while targeted large liposomes demonstrate specific tumor uptake at early times. Although tissue and tumor uptake are greater for cationic liposomes, the tumor-to-liver and spleen-to-liver ratios are similar for both membrane compositions, suggesting a primary role for the liposome's size, compared to the liposome's surface charge. CONCLUSIONS: The findings of this study suggest that large targeted liposomes administered i.p. could be a potent drug-delivery strategy for locoregional therapy of i.p. micrometastatic tumors.


Asunto(s)
Anticuerpos Antineoplásicos , Portadores de Fármacos , Infusiones Parenterales , Liposomas , Neoplasias , Receptor ErbB-2/inmunología , Animales , Anticuerpos Antineoplásicos/administración & dosificación , Anticuerpos Antineoplásicos/química , Anticuerpos Antineoplásicos/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Liposomas/administración & dosificación , Liposomas/química , Ensayo de Materiales , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Tamaño de la Partícula , Cavidad Peritoneal
10.
Cancer Biother Radiopharm ; 35(6): 425-436, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32077749

RESUMEN

Despite the consensus around the clinical potential of the α-emitting radionuclide astatine-211 (211At), there are only a limited number of research facilities that work with this nuclide. There are three main reasons for this: (1) Scarce availability of the nuclide. Despite a relatively large number of globally existing cyclotrons capable of producing 211At, few cyclotron facilities produce the nuclide on a regular basis. (2) Lack of a chemical infrastructure, that is, isolation of 211At from irradiated targets and the subsequent synthesis of an astatinated product. At present, the research groups that work with 211At depend on custom systems for recovering 211At from the irradiated targets. Setting up and implementing such custom units require long lead times to provide a proper working system. (3) The chemistry of 211At. Compared with radiometals there are no well-established and generally accepted synthesis methods for forming sufficiently stable bonds between 211At and the tumor-specific vector to allow for systemic applications. Herein we present an overview of the infrastructure of producing 211At radiopharmaceuticals, from target to radiolabeled product including chemical strategies to overcome hurdles for advancement into clinical trials with 211At.


Asunto(s)
Astato/química , Ciclotrones , Neoplasias/radioterapia , Oncología por Radiación/instrumentación , Radiofármacos/química , Partículas alfa/uso terapéutico , Astato/aislamiento & purificación , Astato/uso terapéutico , Ensayos Clínicos como Asunto , Humanos , Oncología por Radiación/métodos , Radiofármacos/aislamiento & purificación , Radiofármacos/uso terapéutico
11.
EJNMMI Res ; 10(1): 10, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32048062

RESUMEN

PURPOSE: Targeted alpha therapy (TAT) is a promising treatment for micrometastatic and minimal residual cancer. We evaluated systemic α-radioimmunotherapy (α-RIT) of metastatic castration-resistant prostate cancer (mCRPC) using the α-particle emitter 211At-labeled to the anti-PSCA A11 minibody. A11 is specific for prostate stem cell antigen (PSCA), a cell surface glycoprotein which is overexpressed in more than 90% of both localized prostate cancer and bone metastases. METHODS: PC3-PSCA cells were implanted subcutaneously (s.c.) and intratibially (i.t) in nude mice. Efficacy of α-RIT (two fractions-14-day interval) was studied on s.c. macrotumors (0, 1.5 and 1.9 MBq) and on i.t. microtumors (~100-200 µm; 0, 0.8 or 1.5 MBq) by tumor-volume measurements. The injected activities for therapies were estimated from separate biodistribution and myelotoxicity studies. RESULTS: Tumor targeting of 211At-A11 was efficient and the effect on s.c. macrotumors was strong and dose-dependent. At 6 weeks, the mean tumor volumes for the treated groups, compared with controls, were reduced by approximately 85%. The separate myelotoxicity study following one single fraction showed reduced white blood cells (WBC) for all treated groups on day 6 after treatment. For the 0.8 and 1.5 MBq, the WBC reductions were transient and followed by recovery at day 13. For 2.4 MBq, a clear toxicity was observed and the mice were sacrificed on day 7. In the long-term follow-up of the 0.8 and 1.5 MBq-groups, blood counts on day 252 were normal and no signs of radiotoxicity observed. Efficacy on i.t. microtumors was evaluated in two experiments. In experiment 1, the tumor-free fraction (TFF) was 95% for both treated groups and significantly different (p < 0.05) from the controls at a TFF of 66%). In experiment 2, the difference in TFF was smaller, 32% for the treated group versus 20% for the controls. However, the difference in microtumor volume in experiment 2 was highly significant, 0.010 ± 0.003 mm3 versus 3.79 ± 1.24 mm3 (treated versus controls, respectively), i.e., a 99.7% reduction (p < 0.001). The different outcome in experiment 1 and 2 is most likely due to differences in microtumor sizes at therapy, or higher tumor-take in experiment 2 (where more cells were implanted). CONCLUSION: Evaluating fractionated α-RIT with 211At-labeled anti-PSCA A11 minibody, we found clear growth inhibition on both macrotumors and intratibial microtumors. For mice treated with multiple fractions, we also observed radiotoxicity manifested by progressive loss in body weight at 30 to 90 days after treatment. Our findings are conceptually promising for a systemic TAT of mCRPC and warrant further investigations of 211At-labeled PSCA-directed vectors. Such studies should include methods to improve the therapeutic window, e.g., by implementing a pretargeted regimen of α-RIT or by altering the size of the targeting vector.

12.
J Nucl Med ; 50(7): 1153-60, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19525452

RESUMEN

UNLABELLED: The alpha-emitter (211)At labeled to a monoclonal antibody has proven safe and effective in treating microscopic ovarian cancer in the abdominal cavity of mice. Women in complete clinical remission after second-line chemotherapy for recurrent ovarian carcinoma were enrolled in a phase I study. The aim was to determine the pharmacokinetics for assessing absorbed dose to normal tissues and investigating toxicity. METHODS: Nine patients underwent laparoscopy 2-5 d before the therapy; a peritoneal catheter was inserted, and the abdominal cavity was inspected to exclude the presence of macroscopic tumor growth or major adhesions. (211)At was labeled to MX35 F(ab')(2) using the reagent N-succinimidyl-3-(trimethylstannyl)-benzoate. Patients were infused with (211)At-MX35 F(ab')(2) (22.4-101 MBq/L) in dialysis solution via the peritoneal catheter. gamma-Camera scans were acquired on 3-5 occasions after infusion, and a SPECT scan was acquired at 6 h. Samples of blood, urine, and peritoneal fluid were collected at 1-48 h. Hematology and renal and thyroid function were followed for a median of 23 mo. RESULTS: Pharmacokinetics and dosimetric results were related to the initial activity concentration (IC) of the infused solution. The decay-corrected activity concentration decreased with time in the peritoneal fluid to 50% IC at 24 h, increased in serum to 6% IC at 45 h, and increased in the thyroid to 127% +/- 63% IC at 20 h without blocking and less than 20% IC with blocking. No other organ uptakes could be detected. The cumulative urinary excretion was 40 kBq/(MBq/L) at 24 h. The estimated absorbed dose to the peritoneum was 15.6 +/- 1.0 mGy/(MBq/L), to red bone marrow it was 0.14 +/- 0.04 mGy/(MBq/L), to the urinary bladder wall it was 0.77 +/- 0.19 mGy/(MBq/L), to the unblocked thyroid it was 24.7 +/- 11.1 mGy/(MBq/L), and to the blocked thyroid it was 1.4 +/- 1.6 mGy/(MBq/L) (mean +/- SD). No adverse effects were observed either subjectively or in laboratory parameters. CONCLUSION: This study indicates that by intraperitoneal administration of (211)At-MX35 F(ab')(2) it is possible to achieve therapeutic absorbed doses in microscopic tumor clusters without significant toxicity.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Astato/uso terapéutico , Carga Corporal (Radioterapia) , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/radioterapia , Radiometría , Dosificación Radioterapéutica , Adulto , Anciano , Partículas alfa/uso terapéutico , Femenino , Humanos , Infusiones Parenterales , Persona de Mediana Edad , Radioinmunoterapia/métodos , Radiofármacos/uso terapéutico , Resultado del Tratamiento
13.
Sci Rep ; 9(1): 15900, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685874

RESUMEN

Targeted alpha therapy of disseminated cancer is an emerging technique where astatine-211 is one of the most promising candidate nuclides. Although astatine has been known for over 70 years, its chemistry is still largely unexplored, mainly due to the lack of stable or long-lived isotopes. However, substantial amounts of astatine-211 can be produced in cyclotrons by the bombardment of natural bismuth. The astatine can be recovered from the resulting irradiated target material through either wet extraction or dry-distillation. Chloroform has become an important intermediate solvent for the recovery of astatine after production, especially following dry distillation. In this work, the radiochemistry of astatine in chloroform was investigated using evaporation, solvent extraction, chromatographic methods and molecular modeling. The extraction of astatine in chloroform led to the formation of multiple astatine species, allowing for evaporation of the solvent to dryness without any loss of activity. Radiolysis products of chloroform were shown to play an important role in the speciation of astatine forming both reactive and kinetically stable compounds. It was hypothesized that reactions with chlorine, as well as trichloromethyl hydroperoxide, forming polar astatine compounds are important reactions under the current experimental conditions.

14.
J Nucl Med ; 60(8): 1073-1079, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30683761

RESUMEN

Eliminating microscopic residual disease with α-particle radiation is theoretically appealing. After extensive preclinical work with α-particle-emitting 211At, we performed a phase I trial with intraperitoneal α-particle therapy in epithelial ovarian cancer using 211At conjugated to MX35, the antigen-binding fragments-F(ab')2-of a mouse monoclonal antibody. We now present clinical outcome data and toxicity in a long-term follow-up with individual absorbed dose estimations. Methods: Twelve patients with relapsed epithelial ovarian cancer, achieving a second complete or nearly complete response with chemotherapy, received intraperitoneal treatment with escalating (20-215 MBq/L) activity concentrations of 211At-MX35 F(ab')2.Results: The activity concentration was escalated to 215 MBq/L without any dose-limiting toxicities. Most toxicities were low-grade and likely related to the treatment procedure, not clearly linked to the α-particle irradiation, with no observed hematologic toxicity. One grade 3 fatigue and 1 grade 4 intestinal perforation during catheter implantation were observed. Four patients had a survival of more than 6 y, one of whom did not relapse. At progression, chemotherapy was given without signs of reduced tolerability. Overall median survival was 35 mo, with a 1-, 2-, 5-, and 10-y survival of 100%, 83%, 50%, and 25%, respectively. Calculations of the absorbed doses showed that a lower specific activity is associated with a lower single-cell dose, whereas a high specific activity may result in a lower central dose in microtumors. Individual differences in absorbed dose to possible microtumors were due to variations in administered activity and the specific activity. Conclusion: No apparent signs of radiation-induced toxicity or decreased tolerance to relapse therapy were observed. The dosimetric calculations show that further optimization is advisable to increase the efficacy and reduce possible long-term toxicity.


Asunto(s)
Astato , Carcinoma Epitelial de Ovario/inmunología , Carcinoma Epitelial de Ovario/radioterapia , Recurrencia Local de Neoplasia , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/radioterapia , Radioinmunoterapia/métodos , Adulto , Anciano , Partículas alfa , Animales , Anticuerpos Monoclonales/química , Carcinoma Epitelial de Ovario/mortalidad , Catéteres , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Fragmentos Fab de Inmunoglobulinas , Infusiones Parenterales , Dosis Máxima Tolerada , Ratones , Persona de Mediana Edad , Neoplasia Residual , Neoplasias Ováricas/mortalidad , Dosis de Radiación , Radiometría , Recurrencia , Reproducibilidad de los Resultados , Resultado del Tratamiento
15.
J Nucl Med ; 59(4): 646-651, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29175984

RESUMEN

Intraperitoneally administered radiolabeled monoclonal antibodies (mAbs) have been tested in several clinical trials, often with promising results, but have never proven curative. Methods: We have previously presented simulations of clinically relevant amounts of intraperitoneal 90Y-mAbs for treatment of minimal disease and shown that such treatments are unlikely to eradicate microtumors. Our previous model simulated the kinetics of intraperitoneally infused radiolabeled mAbs in humans and showed the benefit of instead using α-emitters such as 211At. In the current work, we introduce penetration of mAbs into microtumors with radii of up to 400 µm. Calculations were performed using dynamic simulation software. To determine the radiation dose distribution in nonvascularized microtumors of various sizes after intraperitoneal 211At-radioimmunotherapy, we used an in-house-developed Monte Carlo program for microdosimetry. Our aim was to find methods that optimize the therapy for as wide a tumor size range as possible. Results: Our results show that high-specific-activity radiolabeled mAbs that are bound to a tumor surface will penetrate slowly compared with the half-lives of 211At and shorter-lived radionuclides. The inner-core cells of tumors with radii exceeding 100 µm may therefore not be sufficiently irradiated. For lower specific activities, the penetration rate and dose distribution will be more favorable for such tumors, but the dose to smaller microtumors and single cells will be low. Conclusion: Our calculations show that the addition of a boost with unlabeled mAb 1-5 h after therapy results in sufficient absorbed doses both to single cells and throughout microtumors up to approximately 300 µm in radius. This finding should also hold for other high-affinity mAbs and short-lived α-emitters.


Asunto(s)
Partículas alfa/uso terapéutico , Anticuerpos Monoclonales/inmunología , Neoplasias/radioterapia , Peritoneo , Dosis de Radiación , Radioinmunoterapia/métodos , Carga Tumoral/efectos de la radiación , Astato/uso terapéutico , Humanos , Modelos Biológicos , Neoplasias/inmunología , Neoplasias/patología , Dosificación Radioterapéutica , Carga Tumoral/inmunología
16.
Crit Rev Oncol Hematol ; 126: 6-12, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29759568

RESUMEN

To improve the accuracy of chemoradiation therapy in anal cancer patients PET/CT is frequently used in the planning of radiation therapy. A systematic review was performed to assess impact on survival, quality of life, symptom score, change in target definition and treatment intention. Systematic literature searches were conducted in Medline, EMBASE, the Cochrane Library, and Centre for Reviews and Dissemination. Ten cross-sectional studies were identified. No data were available on survival or quality of life. The summary estimate of the proportion of patients in which PET/CT had an impact on the target definition, was 23% (95% CI 16;33). The corresponding summary estimate of a change in treatment intent from curative to palliative was 3% (95% CI 2;6). Almost one in four patients had a change in target definition, which supports the use of PET/CT in radiation therapy planning, but the consequence regarding survival and quality of life is still uncertain.


Asunto(s)
Neoplasias del Ano/diagnóstico , Neoplasias del Ano/radioterapia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Planificación de la Radioterapia Asistida por Computador/métodos , Quimioradioterapia , Estudios Transversales , Fluorodesoxiglucosa F18 , Humanos , Calidad de Vida , Radiofármacos
17.
Int J Radiat Oncol Biol Phys ; 69(2): 572-9, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17869670

RESUMEN

PURPOSE: To investigate the potential use of astatine-211 (211At)-labeled trastuzumab for the treatment of HER-2-positive, radioresistant ovarian carcinoma. METHODS AND MATERIALS: Four-week-old nude mice were inoculated intraperitoneally with 5 . 10(6) SKOV-3 cells in 0.4 mL saline on Day 0. The endpoint was the total tumor weight in each mouse on Day 63. Three experiments were performed in which the response to single-dose and fractionated treatment with unlabeled and 211At-labeled antibody was evaluated. RESULTS: Experiment 1 showed, for the same total amount of trastuzumab, a dose-response relationship between 211At activity (0-400 kBq on Day 7) and therapeutic efficacy (p = 0.001). The effect of varying the amount of unlabeled trastuzumab was studied in Experiment 2. All mice, except for the controls, received 400 kBq 211At-trastuzumab, and different groups received 5, 50, or 500 microg trastuzumab on Day 7. The increase from 5 to 50 microg trastuzumab reduced the tumors by 78% in weight. No tumors were present in mice given 500 microg trastuzumab. In Experiment 3, the effect of a fractionated treatment regimen was studied. Mice that received 100 kBq 211At-trastuzumab on Days 7 and 8 had a 42% smaller tumor burden than did controls. Groups of mice injected with 200 + 100 kBq on Days 7 and 21 and mice injected with 100 kBq on Days 7, 8, and 21 both had 24% less tumor weight than the corresponding controls. CONCLUSION: The combination of 500 microg trastuzumab and 400 kBq 211At-trastuzumab had the greatest effect, with complete eradication of the tumors in this nude mouse model.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Astato/uso terapéutico , Neoplasias Ováricas/radioterapia , Tolerancia a Radiación , Radioinmunoterapia/métodos , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales Humanizados , Antineoplásicos/administración & dosificación , Astato/administración & dosificación , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Ováricas/química , Neoplasias Ováricas/patología , Dosificación Radioterapéutica , Receptor ErbB-2 , Trastuzumab
18.
J Nucl Med ; 58(4): 598-604, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27688477

RESUMEN

The goal of this study was to investigate whether targeted α-therapy can be used to successfully treat macrotumors, in addition to its established role for treating micrometastatic and minimal disease. We used an intravenous fractionated regimen of α-radioimmunotherapy in a subcutaneous tumor model in mice. We aimed to evaluate the absorbed dose levels required for tumor eradication and growth monitoring, as well as to evaluate long-term survival after treatment. Methods: Mice bearing subcutaneous tumors (50 mm3, NIH:OVCAR-3) were injected repeatedly (1-3 intravenous injections 7-10 d apart, allowing bone marrow recovery) with 211At-MX35-F(ab')2 at different activities (close to acute myelotoxicity). Mean absorbed doses to tumors and organs were estimated from biodistribution data and summed for the fractions. Tumor growth was monitored for 100 d and survival for 1 y after treatment. Toxicity analysis included body weight, white blood cell count, and hematocrit. Results: Effects on tumor growth after fractionated α-radioimmunotherapy with 211At-MX35-F(ab')2 was strong and dose-dependent. Complete remission (tumor-free fraction, 100%) was found for tumor doses of 12.4 and 16.4 Gy. The administered activities were high, and long-term toxicity effects (≤60 wk) were clear. Above 1 MBq, the median survival decreased linearly with injected activity, from 44 to 11 wk. Toxicity was also seen by reduced body weight. White blood cell count analysis after α-radioimmunotherapy indicated bone marrow recovery for the low-activity groups, whereas for high-activity groups the reduction was close to acute myelotoxicity. A decrease in hematocrit was seen at a late interval (34-59 wk after therapy). The main external indication of poor health was dehydration. Conclusion: Having observed complete eradication of solid tumor xenografts, we conclude that targeted α-therapy regimens may stretch beyond the realm of micrometastatic disease and be eradicative also for macrotumors. Our observations indicate that at least 10 Gy are required. This agrees well with the calculated tumor control probability. Considering a relative biological effectiveness of 5, this dose level seems reasonable. However, complete remission was achieved first at activity levels close to lethal and was accompanied by biologic effects that reduced long-term survival.


Asunto(s)
Partículas alfa/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Astato/uso terapéutico , Transformación Celular Neoplásica , Neoplasias Ováricas/radioterapia , Dosis de Radiación , Radioinmunoterapia/métodos , Animales , Anticuerpos Monoclonales/farmacocinética , Peso Corporal/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Radiometría , Análisis de Supervivencia , Factores de Tiempo , Distribución Tisular
19.
EJNMMI Res ; 7(1): 38, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28439844

RESUMEN

BACKGROUND: The aim of this study was to compare the therapeutic efficacy of two different activity levels of the 213Bi-labeled monoclonal antibody MX35 in an ovarian cancer model. Sixty female BALB/c (nu/nu) mice were inoculated intraperitoneally with human ovarian cancer cells (OVCAR-3). Two weeks later, 40 mice were injected intraperitoneal (i.p.) with 1 ml of 213Bi-MX35, 3 MBq/mL (n = 20), or 9 MBq/mL (n = 20). An additional 20 mice received unlabeled MX35. Incidence of tumors and ascites was investigated 8 weeks after therapy. Body weight and white blood cell counts were monitored after treatment for possible signs of toxicity. RESULTS: The tumor-free fraction of the animals treated with 3 MBq/mL of 213Bi-MX35 was 0.55, whereas that of animals treated with 9 MBq/mL of 213Bi-MX35 was 0.78. The control group treated with unlabeled MX35 had a tumor-free fraction of 0.15. No significant reduction in white blood cell counts or weight loss was observed. CONCLUSIONS: Tumor growth after i.p. treatment with 213Bi-MX35 was significantly reduced compared to treatment with unlabeled MX35. Treatment with 9 MBq/mL of 213Bi-MX35 resulted in higher tumor-free fraction compared with 3 MBq/mL of 213Bi-MX35, but this difference was not statistically significant. No signs of toxicity were observed in the treated animals.

20.
J Nucl Med ; 47(8): 1342-50, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16883015

RESUMEN

UNLABELLED: The purpose of this work was to (a) investigate the efficacy of radioimmunotherapy using 211At-MX35 F(ab')2 or 211At-Rituximab F(ab')2 (nonspecific antibody) against differently advanced ovarian cancer in mice; (b) image the tumor growth on the peritoneum; and (c) calculate the specific energy and mean absorbed dose to tumors and critical organs. METHODS: Two experiments with 5-wk-old nude mice (n = 100 + 93), intraperitoneally inoculated with approximately 1 x 10(7) NIH:OVCAR-3 cells, were done. At either 1, 3, 4, 5, or 7 wk after inoculation animals were intraperitoneally treated with approximately 400 kBq 211At-MX35 F(ab')2 (n = 50 + 45), approximately 400 kBq 211At-Rituximab F(ab')2 (n = 25 + 24), or unlabeled Rituximab F(ab')2 (n = 25 + 24). At the time of treatment 29 animals were sacrificed and biopsies were taken for determination of tumor sizes using scanning electron microscopy (SEM). Eight weeks after each treatment the animals were sacrificed and the presence of macro- and microscopic tumors and ascites was determined. The specific energy and mean absorbed dose to tumors were calculated. The activity concentration was measured in critical organs and abdominal fluid. RESULTS: When given treatment 1, 3, 4, 5, or 7 wk after cell inoculation the tumor-free fraction (TFF) was 95%, 68%, 58%, 47%, 26%, and 100%, 80%, 20%, 20%, and 0% when treated with 211At-MX35 F(ab')2 or 211At-Rituximab F(ab')2, respectively. The SEM images revealed maximum tumor radius of approximately 30 mum 1 wk after cell inoculation, increasing to approximately 340 mum at 7 wk. Specific energy to cell nuclei varied between 0 and approximately 540 Gy, depending on assumptions regarding activity distribution and tumor size. The mean absorbed dose to thyroid, kidneys, and bone marrow was approximately 35, approximately 4, and approximately 0.3 Gy, respectively. CONCLUSION: Treatment with 211At-MX35 F(ab')2 or 211At-Rituximab F(ab')2 resulted in a TFF of 95%-100% when the tumor radius was < or =30 microm. The TFF was decreased (TFF < or = 20%) for 211At-Rituximab F(ab')2 when the tumor radius exceeded the range of the alpha-particles. The specific antibody gave for these tumor sizes a significantly better TFF, explained by a high mean absorbed dose (>22 Gy) from the activity bound to the tumor surface and probably some contribution from penetrating activity.


Asunto(s)
Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/terapia , Radioinmunoterapia/métodos , Partículas alfa , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales de Origen Murino , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Electrónica , Trasplante de Neoplasias , Cintigrafía , Rituximab , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA