RESUMEN
Kimberlites are volatile-rich, occasionally diamond-bearing magmas that have erupted explosively at Earth's surface in the geologic past1-3. These enigmatic magmas, originating from depths exceeding 150 km in Earth's mantle1, occur in stable cratons and in pulses broadly synchronous with supercontinent cyclicity4. Whether their mobilization is driven by mantle plumes5 or by mechanical weakening of cratonic lithosphere4,6 remains unclear. Here we show that most kimberlites spanning the past billion years erupted about 30 million years (Myr) after continental breakup, suggesting an association with rifting processes. Our dynamical and analytical models show that physically steep lithosphere-asthenosphere boundaries (LABs) formed during rifting generate convective instabilities in the asthenosphere that slowly migrate many hundreds to thousands of kilometres inboard of rift zones. These instabilities endure many tens of millions of years after continental breakup and destabilize the basal tens of kilometres of the cratonic lithosphere, or keel. Displaced keel is replaced by a hot, upwelling mixture of asthenosphere and recycled volatile-rich keel in the return flow, causing decompressional partial melting. Our calculations show that this process can generate small-volume, low-degree, volatile-rich melts, closely matching the characteristics expected of kimberlites1-3. Together, these results provide a quantitative and mechanistic link between kimberlite episodicity and supercontinent cycles through progressive disruption of cratonic keels.
RESUMEN
RATIONALE: Mycobacterial species contain high concentrations of mycolic acids in their cell wall. Mycobacteria can pose a threat to both human health and the environment. Mass spectrometry lipidomic characterization can identify bacterial species and suggest targets for microbiological interventions. Due to the complex structures of mycolic acids and the possibility of isobaric isomers, multiple levels of separation are required for complete characterization. In this study, cyclic ion mobility (cIM) mass spectrometry (MS) was used for the analysis, separation and fragmentation of mycolic acids isomers from the bacterial species Gordonia amarae and Mycobacterium bovis. METHODS: Mycolic acid isomers were interrogated from cultured G. amarae biomass and commercially available M. bovis mycolic acid extracts. These were infused into a cIM-enabled quadrupole time-of-flight MS. Ions of interest were non-simultaneously selected with the quadrupole and passed around the cyclic ion mobility device multiple times. Fragment ion analysis was then performed for the resolved isomers of the quadrupole-selected ions. RESULTS: Repeated passes of the cIM device successfully resolved otherwise overlapping MA isomers, allowing isomer isolation and producing an ion-specific post-mobility fragmentation spectrum without isomeric interference. CONCLUSIONS: Mycolic acids (MA) isomers from G. amarae and M. bovis were resolved, resulting in a high mobility resolution and low interference fragmentation analysis. These revealed varying patterns of MA isomers in the two species: G. amarae's most abundant ion of each set of MA has 1-2 conformations, while the MA + 2 m/z the most abundant ion of each set has 3-6 conformations. These were resolved after 70 passes of the cyclic device. M. bovis' most abundant ion of each keto-MA set has 2 conformations, while the keto-MA + 2 m/z has 1-2 conformations. These were resolved after 75 passes.
Asunto(s)
Espectrometría de Movilidad Iónica , Espectrometría de Masas , Mycobacterium bovis , Ácidos Micólicos , Ácidos Micólicos/química , Ácidos Micólicos/análisis , Isomerismo , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Mycobacterium bovis/químicaRESUMEN
RATIONALE: Isomeric separation of prostanoids is often a challenge and requires chromatography and time-consuming sample preparation. Multiple prostanoid isomers have distinct in vivo functions crucial for understanding the inflammation process, including prostaglandins E2 (PGE2 ) and D2 (PGD2 ). High-resolution ion mobility spectrometry (IMS) based on linear ion transport in low-to-moderate electric fields and nonlinear ion transport in strong electric fields emerges as a broad approach for rapid separations prior to mass spectrometry. METHODS: Derivatization with Girard's reagent T (GT) was used to overcome inefficient ionization of prostanoids in negative ionization mode due to poor deprotonation of the carboxylic acid group. Three high-resolution IMS techniques, namely linear cyclic IMS, linear trapped IMS, and nonlinear high-field asymmetric waveform IMS, were compared for the isomeric separation and endogenous detection of prostanoids present in intestinal tissue. RESULTS: Direct infusion of GT-derivatized prostanoids proved to increase the ionization efficiency in positive ionization mode by a factor of >10, which enabled detection of these molecules in endogenous concentration levels. The high-resolution IMS comparison revealed its potential for rapid isomeric analysis of biologically relevant prostanoids. Strengths and weaknesses of both linear and nonlinear IMS are discussed. Endogenous prostanoid detection in intestinal tissue extracts demonstrated the applicability of our approach in biomedical research. CONCLUSIONS: The applied derivatization strategy offers high sensitivity and improved stereoisomeric separation for screening of complex biological systems. The high-resolution IMS comparison indicated that the best sensitivity and resolution are achieved by linear and nonlinear IMS, respectively.
Asunto(s)
Espectrometría de Movilidad Iónica , Prostaglandinas , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Betaína/químicaRESUMEN
The characterization of enantiomers is an important analytical challenge in the chemical and life sciences. Thorough evaluation of the purity of chiral molecules is particularly required in the pharmaceutical industry where safety concerns are paramount. Assessment of the enantiomeric composition is still challenging and time-consuming, meaning that alternative approaches are required. In this study, we exploit the formation of dimers as diastereomeric pairs of enantiomers to affect separation by high resolution cyclic ion mobility-mass spectrometry. Using the example of (R/S)-thalidomide, we show that even though this is not an enantiomer separation, we can determine which enantiomer is in excess and obtain quantitative information on the enantiomer composition without the need for a chiral modifier. Further examples of the approach are presented, including d/l-tryptophan and (R/S)-propanolol, and demonstrate the need for mobility resolving power in excess of 400 (CCS/ΔCCS).
Asunto(s)
Espectrometría de Movilidad Iónica , Triptófano , Espectrometría de Masas/métodos , EstereoisomerismoRESUMEN
The in-depth isomeric and isobaric description of ultra-complex organic mixtures remains one of the most challenging analytical tasks. In the last two decades, ion mobility coupled to high-performance mass spectrometry added an additional structural dimension. Despite tremendous instrumental improvements, commercial devices are still limited in ion mobility and mass spectrometric resolving power and struggle to resolve isobaric species and complex isomeric patterns. To overcome these limitations, we explored the capabilities of cyclic ion mobility high-resolution mass spectrometry with special emphasis on petrochemical applications. We could show that quadrupole-selected ion mobility mass spectrometry gives closer insights into the isomeric distribution. In combination with slicing the specific parts of the ion mobility dimension, isobaric interferences could be drastically removed. Collision-induced dissociation (CID) allowed separating structural groups of polycyclic aromatic hydrocarbons and heterocycles (PAH/PASH), deploying up to 10 passes in the cyclic ion mobility device. Finally, we introduce a data processing workflow to resolve the 3.4 mDa SH4/C3 mass split by combining ion mobility and mass spectrometric resolving power. Cyclic ion mobility with the intelligent design of experiments and processing routines will be a powerful approach addressing the isobaric and isomeric complexity of ultra-complex mixtures.
RESUMEN
The identification and localization of isomeric peptide modifications is a critical requirement of the biopharmaceutical industry. Despite the ability of liquid chromatography-mass spectrometry to identify many of the common post translational modifications, the identification of isobaric or racemized peptides is confounded by modern mass spectrometry-based techniques. Here, we present a novel approach combining liquid chromatography with a high-resolution ion mobility mass spectrometry system to differentiate peptide and peptide fragments based upon their mobility and mass.
Asunto(s)
Productos Biológicos , Cromatografía Liquida , Espectrometría de Movilidad Iónica , Espectrometría de Masas , PéptidosRESUMEN
1-ß-O-Acyl-glucuronides (AGs) are common metabolites of carboxylic acid-containing xenobiotics, including, e.g., many nonsteroidal anti-inflammatory drugs (NSAIDs). They are of concern to regulatory authorities because of the association of these metabolites with the hepatotoxicity that has resulted in drug withdrawal. One factor in assessing the potential risk posed by AGs is the rate of transacylation of the biosynthetic 1-ß-O-acyl form to the 2-, 3-, and 4-O-acyl isomers. While transacylation can be measured using 1H NMR spectroscopy or liquid chromatography-mass spectrometry (LC-MS), the process can be time consuming and involve significant method development. The separation of these positional isomers by ion mobility spectrometry (IMS) has the potential to allow their rapid analysis, but conventional instruments lacked the resolving power to do this. Prediction of the collision cross section (CCS) using a machine learning model suggested that greater IMS resolution might be of use in this area. Cyclic IMS was evaluated for separating mixtures of isomeric AGs of diclofenac and was compared with a conventional ultraperformance liquid chromatography (UPLC)-MS method as a means for studying transacylation kinetics. The resolution of isomeric AGs was not seen using a conventional traveling wave IMS device; however, separation was seen after several passes around a cyclic IMS. The cyclic IMS enabled the degradation of the 1-ß-O-acyl-isomer to be analyzed much more rapidly than by LC-MS. The ability of cyclic IMS to monitor the rate of AG transacylation at different pH values, without the need for a prior chromatographic separation, should allow high-throughput, real-time, monitoring of these types of reactions.
Asunto(s)
Glucurónidos , Espectrometría de Movilidad Iónica , Diclofenaco/análogos & derivados , Espectrometría de MasasRESUMEN
Native mass spectrometry is now an important tool in structural biology. Thus, the nature of higher protein structure in the vacuum of the mass spectrometer is an area of significant interest. One of the major goals in the study of gas-phase protein structure is to elucidate the stabilising role of interactions at the level of individual amino acid residues. A strategy combining protein chemical modification together with collision induced unfolding (CIU) was developed and employed to probe the structure of compact protein ions produced by native electrospray ionisation. Tractable chemical modification was used to alter the properties of amino acid residues, and ion mobility-mass spectrometry (IM-MS) utilised to monitor the extent of unfolding as a function of modification. From these data the importance of specific intramolecular interactions for the stability of compact gas-phase protein structure can be inferred. Using this approach, and aided by molecular dynamics simulations, an important stabilising interaction between K6 and H68 in the protein ubiquitin was identified, as was a contact between the N-terminus and E22 in a ubiquitin binding protein UBA2.
Asunto(s)
Aminoácidos , Espectrometría de Movilidad Iónica , Espectrometría de Masas , Simulación de Dinámica Molecular , UbiquitinaRESUMEN
We report a new, autonomous Lab-on-Chip (LOC) microfluidic pH sensor with a 6000 m depth capability, ten times the depth capability of the state of the art autonomous spectrophotometric sensor. The pH is determined spectrophotometrically using purified meta-Cresol Purple indicator dye offering high precision (<0.001 pH unit measurement reproducibility), high frequency (every 8 min) measurements on the total proton scale from the surface to the deep ocean (to 600 bar). The sensor requires low power (3 W during continuous operation or â¼1300 J per measurement) and low reagent volume (â¼3 µL per measurement) and generates small waste volume (â¼2 mL per measurement) which can be retained during deployments. The performance of the LOC pH sensor was demonstrated on fixed and moving platforms over varying environmental salinity, temperature, and pressure conditions. Measurement accuracy was +0.003 ± 0.022 pH units (n = 47) by comparison with validation seawater sample measurements in coastal waters. The combined standard uncertainty of the sensor in situ pHT measurements was estimated to be ≤0.009 pH units at pH 8.5, ≤ 0.010 pH units at pH 8.0, and ≤0.014 pH units at pH 7.5. Integrated on autonomous platforms, this novel sensor opens new frontiers for pH observations, especially within the largest and most understudied ecosystem on the planet, the deep ocean.
Asunto(s)
Ecosistema , Agua de Mar , Concentración de Iones de Hidrógeno , Reproducibilidad de los Resultados , EspectrofotometríaRESUMEN
Liquid extraction surface analysis (LESA) is an ambient surface sampling technique that allows the analysis of intact proteins directly from tissue samples via mass spectrometry. Integration of ion mobility separation to LESA mass spectrometry workflows has shown significant improvements in the signal-to-noise ratios of the resulting protein mass spectra and hence the number of proteins detected. Here, we report the use of a quadrupole-cyclic ion mobility-time-of-flight mass spectrometer (Q-cIM-ToF) for the analysis of proteins from mouse brain and rat kidney tissues sampled via LESA. Among other features, the instrument allows multiple pass cyclic ion mobility separation, with concomitant increase in resolving power. Single-pass experiments enabled the detection of 30 proteins from mouse brain tissue, rising to 44 when quadrupole isolation was employed. In the absence of ion mobility separation, 21 proteins were detected in rat kidney tissue including the abundant α- and ß-globin chains from hemoglobin. Single-pass cyclic ion mobility mass spectrometry enabled the detection of 60 additional proteins. Multipass experiments of a narrow m/z range (m/z 870-920) resulted in the detection of 24 proteins (one pass), 37 proteins (two passes) and 54 proteins (three passes), thus demonstrating the benefits of improved mobility resolving power.
Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Proteínas/análisis , Animales , Encéfalo/metabolismo , Hemoglobinas/análisis , Riñón/metabolismo , Extracción Líquido-Líquido , Ratones , Ratas , Propiedades de SuperficieRESUMEN
RATIONALE: Mass spectrometry (MS) is often employed in the characterisation of synthetic polymers. As polymer architecture becomes more complex, ion mobility (IM) is increasingly being coupled with MS to provide an additional dimension of separation, along with structural information. In this study, we explore the use of a novel cyclic ion mobility (cIM) mass spectrometer for the analysis of a co-polymer sample. METHODS: A solution of poly(ethylene glycol)-poly(propylene glycol) random co-polymer (PEG-ran-PPG) was used as a representative polymer sample. The solution was infused into a cIM-enabled quadrupole time-of-flight mass spectrometer. An m/z region of interest, selected using the quadrupole, was passed around the cIM device multiple times. Subsequently, regions of an arrival time distribution were 'sliced' and subjected to tandem mass spectrometric (MS/MS) analysis. RESULTS: Typical, multiply charged series were observed for the polymer under electrospray ionisation. Multiple passes of the cIM device resulted in the separation of otherwise-overlapping charge states within a narrow m/z window (~3 m/z units), allowing individual selection of ions. These isolated ions were then subjected to post-mobility fragmentation resulting in clean, high-resolution product ion spectra, with a significant reduction in interference. CONCLUSIONS: Scalable IM separation (IMS), brought about by passing ions multiple times around the cIM device, was demonstrated to provide increased IM resolution for ions in the selected m/z window. After multiple passes, deconvoluted high-resolution MS/MS product ion spectra were successfully acquired for ions that previously had interfering overlapping species present.
RESUMEN
Carbohydrate isomers with identical atomic composition cannot be distinguished by mass spectrometry. By separating the ions according to their conformation in the gas phase, ion mobility (IM) coupled to mass spectrometry is an attractive approach to overcome this issue and extend the limits of mass spectrometry in structural glycosciences. Recent technological developments have significantly increased the resolving power of ion mobility separators. One such instrument features a cyclic traveling-wave IM separator integrated in a quadrupole/time-of-flight mass spectrometer. This system allows for multipass ion separations and for pre-, intra-, and post-IM fragmentation. In the present study, we utilize this system to explore a complex mixture of oligoporphyrans derived from the enzymatic digestion of the cell wall of the red alga P. umbilicalis. We are able to deduce their complete structure using IM arrival times and the m/z of specific fragments. This approach was successfully applied for sequencing of oligoporphyrans of up to 1500 Da and included the positioning of the methyl ether and sulfate groups. The structures defined in this study by IM-MS/MS agree with those found in the past but use much more time-consuming analytical approaches. This study also revealed some so far undescribed structures, present at very low abundance. In addition, the results made it possible to compare the abundance of the different isomers released by the enzyme and to draw further conclusions on the specificity of ß-porphyranase and more particularly on its accommodation tolerance of anhydro-bridges in subsites. Finally, a separation of two isomers with very similar mobility was obtained after 58 passes around the cIM, with an estimated resolving power of 920 for these triply charged species, confirming the structures attributed to these two isomers.
RESUMEN
Mass spectrometry is widely used in studying the structures of compounds present in crude oil. In this study, a novel mass spectrometer incorporating a cyclic ion mobility separator was used to obtain tandem mass spectra of crude oil compounds in a narrow mass-to-charge ratio (m/z) window. Isolation of specific peaks was performed by combining quadrupole and ion mobility separation. As a result, peaks differing by an m/z value of 0.1 could be isolated. Tandem mass spectrometry with collision-induced dissociation was successfully performed to study the chemical structures of the isolated ions. A series of ions ranging from m/z 374 to m/z 384, differing by two hydrogen atoms but with the same number of carbons, were isolated and tandem mass spectra were obtained. The higher m/z precursor ions produced smaller fragment ions; this is explained by the reduced aromaticity owing to an increased number of hydrogen atoms. The ions at m/z 388 and 374, differing by a CH2 group, produced very similar fragmentation patterns. Overall, the data obtained from this study clearly demonstrate that the novel cyclic ion mobility-mass spectrometer is a powerful instrument that can provide tandem mass spectra of individual compounds constituting complex mixtures such as crude oils.
RESUMEN
RATIONALE: Fluoroquinolones (FLQs) have been shown to form protomers with distinctive fragment profiles. Experimental parameters affect protomer formation, impacting observed conventional tandem mass spectrometric (MS/MS) dissociation and multiple reaction monitoring (MRM) transition reproducibility. Collision cross section (CCS) measurement can provide an additional identification metric and improved ion mobility (IM) separation strategies could provide further understanding of fluctuations in fragmentation when using electrospray ionisation (ESI). METHODS: Porcine muscle tissue was fortified with nine fluoroquinolone antibiotics. Extracts were cleaned using QuEChERS dispersive extraction. Separation was achieved via ultra-high-performance liquid chromatography (UHPLC) and analysis performed using positive ion ESI coupled with linear T-wave IM (N2 and CO2 drift gas) and cyclic IM-MS (calibrated to perform accurate mass and CCS measurement). RESULTS: IM-resolved protomeric species have been observed for nine FLQs (uniquely three for danofloxacin). Long-term reproducibility and cross-platform T-wave/cIM studies have demonstrated CCS metric errors <1.5% when compared with a FLQ protomer reference CCS library. When comparing FLQ protomer separation using a standard, linear T-wave IM separator (N2 /CO2 ) and using a high-resolution cyclic T-wave device (N2 ), protomer peak-to-peak resolution ranged between Rs = 1 to Rs = 6 for the IM strategies utilised. CONCLUSIONS: CCS is a reliable cross platform metric; specific FLQ CCS identification fingerprints have been produced, illustrating the potential to compliment MS/MS specificity or provide an alternative identification metric. Using cIM there is opportunity to correlate the erratic nature of protomer formation with the analytical conditions used and to gain further understanding of ionisation/dissociation mechanisms taking place during routine analyses.
Asunto(s)
Antibacterianos/química , Residuos de Medicamentos/química , Fluoroquinolonas/química , Animales , Cromatografía Líquida de Alta Presión , Contaminación de Alimentos/análisis , Isomerismo , Espectrometría de Masas , Carne/análisis , Músculo Esquelético/química , PorcinosRESUMEN
RATIONALE: Boron isotope analysis of marine carbonates by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) offers the potential for rapid sample throughput, and the means to examine micron-scale variations in the δ11 B signatures of fossil skeletons and shells/tests of marine organisms. Existing studies demonstrate an acceptable level of reproducibility is achievable, but also typically show a level of accuracy outside the limits required by most applications. Here we investigate matrix interference effects as a cause of inaccuracy and imprecision. METHODS: Analyses were performed on a standard format Thermo Scientific Neptune Plus MC-ICP mass spectrometer coupled to a New Wave Research 193 nm ArF laser ablation system. The effects of matrix interference on δ11 B analysis were investigated through analyses of a set of reference materials with differing B/Ca ratios. Three approaches to correct for matrix-induced effects were trialled: (1) use of matrix-matched standards, (2) utilisation of the relationship between δ11 B inaccuracy and11 B/43 Ca, 11 B/40 ArCa4+ or 11 B/Cainterference from three reference materials with known δ11 B values and varying B/Ca ratios, and (3) direct characterisation of the (sloping) interference itself. RESULTS: Matrix interference from scattered Ca ions on 10 B can impede both the accuracy and the reproducibility of δ11 B analysis by LA-MC-ICP-MS. Based on analyses of two in-house reference materials, deep sea coral PS69/3181 and inorganic calcite UWC-1, we find approach 2, following the 11 B/Cainterference relationship, gives the best mean accuracies (within 0.4 of solution values) and external reproducibilities (± 0.5 2 SD for PS69/3181). This approach has been applied to analyses of an annual growth cycle of a Siderastrea siderea coral and eight Cibicidoides wuellerstorfi benthic foraminifera. Both coral and foraminifera data match solution MC-ICP-MS analyses within reported uncertainties. CONCLUSIONS: LA-MC-ICP-MS can produce accurate and precise δ11 B data to a 0.5 (2σ) level on <0.3 ng B after correction for Ca interference effects.
RESUMEN
The fucosylation of glycans leads to diverse structures and is associated with many biological and disease processes. The exact determination of fucoside positions by tandem mass spectrometry (MS/MS) is complicated because rearrangements in the gas phase lead to erroneous structural assignments. Here, we demonstrate that the combined use of ion-mobility MS and well-defined synthetic glycan standards can prevent misinterpretation of MS/MS spectra and incorrect structural assignments of fucosylated glycans. We show that fucosyl residues do not migrate to hydroxyl groups but to acetamido moieties of N-acetylneuraminic acid as well as N-acetylglucosamine residues and nucleophilic sites of an anomeric tag, yielding specific isomeric fragment ions. This mechanistic insight enables the characterization of unique IMS arrival-time distributions of the isomers which can be used to accurately determine fucosyl positions in glycans.
Asunto(s)
Fucosa/química , Polisacáridos/química , Bibliotecas de Moléculas Pequeñas/química , Acetilglucosamina/química , Gases/química , Iones/química , Isomerismo , Espectrometría de Masas , Estructura Molecular , Ácido N-Acetilneuramínico/químicaRESUMEN
Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation.
RESUMEN
Compositional differences of acid whey (AW) in comparison with other whey types limit its processability and application of conventional membrane processing. Hence, the present study aimed to identify chemical and physical properties of AW solutions as a function of pH (3 to 10.5) at 4 different temperatures (15, 25, 40, or 90°C) to propose appropriate membrane-processing conditions for efficient use of AW streams. The concentration of minerals, mainly calcium and phosphate, and proteins in centrifuged supernatants was significantly lowered with increase in either pH or temperature. Lactic acid content decreased with pH decline and rose at higher temperatures. Calcium appeared to form complexes with phosphates and lactates mainly, which in turn may have induced molecular attractions with the proteins. An increase in pH led to more soluble protein aggregates with large particle sizes. Surface hydrophobicity of these particles increased significantly with temperature up to 40°C and decreased with further heating to 90°C. Surface charge was clearly pH dependent. High lactic acid concentrations appeared to hinder protein aggregation by hydrophobic interactions and may also indirectly influence protein denaturation. Processing conditions such as pH and temperature need to be optimized to manipulate composition, state, and surface characteristics of components of AW systems to achieve an efficient separation and concentration of lactic acid and lactose.
Asunto(s)
Bovinos , Calor , Suero Lácteo/química , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Ácido Láctico/química , Lactosa/química , Proteínas de la Leche/química , Tamaño de la Partícula , TemperaturaRESUMEN
The combination of enhanced resolving power and improved duty cycle on a multireflecting time-of-flight mass spectrometer is described. Resolving power increases are achieved by extending the effective ion path length from 47 m to greater than 200 m. Path length increases are achieved through containment of ions within the analyzer for up to N = 5 passes using a pulsed deflection electrode. Resolving power was shown to increase from 220,000 to 402,000 (fwhm) at m/z 785 for N = 1 and N = 4 analyzer passes, respectively. Due to the timing of the pulsed deflection electrode, the approach is particularly suited to high resolution analysis over a targeted m/z range. Duty cycle enhancements are achieved for ions of the targeted m/z range via accumulation prior to orthogonal acceleration, providing signal improvements of 2 orders of magnitude. Achieving such high resolving powers at fast scan rates (30 Hz) can yield additional information such as fine isotope structure; when combined with ppb mass measurement accuracy, high confidence in analyte identification can be achieved. The technique is applied for N = 2 analyzer passes, demonstrating fine isotope structure for a typical UHPLC metabolite identification experiment at a 10 Hz acquisition rate. Additionally, mass spectrometry imaging data is acquired using DESI, demonstrating the improved image clarity achieved at >300,000 (fwhm).