Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 136(6): 145, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253878

RESUMEN

KEY MESSAGE: Gene expression at the RBgh2 locus indicates involvement in cAMP/G-protein-coupled signalling and innate immunity in barley powdery mildew adult plant resistance. Barley powdery mildew is a globally significant disease, responsible for reduced grain yield and quality. A major effect adult plant resistance gene, RBgh2, was previously found in a landrace from Azerbaijan. The atypical phenotype suggested different underlying genetic factors compared to conventional resistance genes and to investigate this, genome-wide gene expression was compared between sets of heterogeneous doubled haploids. RBgh2 resistance is recessive and induces both temporary genome-wide gene expression changes during powdery mildew infection together with constitutive changes, principally at the RBgh2 locus. Defence-related genes significantly induced included homologues of genes associated with innate immunity and pathogen recognition. Intriguingly, RBgh2 resistance does not appear to be dependent on salicylic acid signalling, a key pathway in plant resistance to biotrophs. Constitutive co-expression of resistance gene homologues was evident at the 7HS RBgh2 locus, while no expression was evident for a 6-transmembrane gene, predicted in silico to contain both G-protein- and calmodulin-binding domains. The gene was disrupted at the 5' end, and G-protein-binding activity was suppressed. RBgh2 appears to operate through a unique mechanism that co-opts elements of innate immunity.


Asunto(s)
Ascomicetos , Hordeum , Hordeum/genética , Ascomicetos/genética , Inmunidad Innata/genética , Fenotipo , Genes de Plantas , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
2.
Phytopathology ; 113(6): 1058-1065, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37454241

RESUMEN

Spot form net blotch, caused by Pyrenophora teres f. maculata, is a significant global disease of barley (Hordeum vulgare). Baudin, a barley cultivar that was until recently extensively grown in Western Australia, was reported as having minor seedling resistance. However, Baudin was highly susceptible to a local isolate, M3, suggesting that this isolate had gained virulence against a major susceptibility gene. M3 causes atypical lesions with pale centers early in the infection, with initial screens of a segregating population indicating that this was determined by a single locus in the Baudin genome. The susceptibility was semidominant in F1 progeny and the susceptibility gene, designated Spm1 (Susceptibility to P. teres f. maculata 1), mapped to a 190-kb section of the resistance gene-rich Mla region of chromosome 1H. Phenotyping with Ptm SP1, a non-M3 pathotype, identified a seedling resistance locus on 2H. Minor gene resistance is generally regarded as potentially durable, but our findings suggest the resistance to spot form net blotch in Baudin is nullified by strong susceptibility conferred by a separate locus on 1H. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Hordeum , Micosis , Hordeum/genética , Hordeum/microbiología , Susceptibilidad a Enfermedades , Predisposición Genética a la Enfermedad , Epistasis Genética , Proteínas de Plantas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética , Australia Occidental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA