Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 20(9): 1291-1303, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37400558

RESUMEN

An unambiguous description of an experiment, and the subsequent biological observation, is vital for accurate data interpretation. Minimum information guidelines define the fundamental complement of data that can support an unambiguous conclusion based on experimental observations. We present the Minimum Information About Disorder Experiments (MIADE) guidelines to define the parameters required for the wider scientific community to understand the findings of an experiment studying the structural properties of intrinsically disordered regions (IDRs). MIADE guidelines provide recommendations for data producers to describe the results of their experiments at source, for curators to annotate experimental data to community resources and for database developers maintaining community resources to disseminate the data. The MIADE guidelines will improve the interpretability of experimental results for data consumers, facilitate direct data submission, simplify data curation, improve data exchange among repositories and standardize the dissemination of the key metadata on an IDR experiment by IDR data sources.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Conformación Proteica
2.
Nucleic Acids Res ; 52(D1): D442-D455, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37962385

RESUMEN

Short Linear Motifs (SLiMs) are the smallest structural and functional components of modular eukaryotic proteins. They are also the most abundant, especially when considering post-translational modifications. As well as being found throughout the cell as part of regulatory processes, SLiMs are extensively mimicked by intracellular pathogens. At the heart of the Eukaryotic Linear Motif (ELM) Resource is a representative (not comprehensive) database. The ELM entries are created by a growing community of skilled annotators and provide an introduction to linear motif functionality for biomedical researchers. The 2024 ELM update includes 346 novel motif instances in areas ranging from innate immunity to both protein and RNA degradation systems. In total, 39 classes of newly annotated motifs have been added, and another 17 existing entries have been updated in the database. The 2024 ELM release now includes 356 motif classes incorporating 4283 individual motif instances manually curated from 4274 scientific publications and including >700 links to experimentally determined 3D structures. In a recent development, the InterPro protein module resource now also includes ELM data. ELM is available at: http://elm.eu.org.


Asunto(s)
Secuencias de Aminoácidos , Bases de Datos de Proteínas , Eucariontes , Secuencias de Aminoácidos/genética , Procesamiento Proteico-Postraduccional , Proteínas/genética , Proteínas/metabolismo , Eucariontes/genética , Internet
3.
Nucleic Acids Res ; 50(D1): D480-D487, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34850135

RESUMEN

The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.


Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/metabolismo , Anotación de Secuencia Molecular , Programas Informáticos , Secuencia de Aminoácidos , ADN/genética , ADN/metabolismo , Conjuntos de Datos como Asunto , Ontología de Genes , Humanos , Internet , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Unión Proteica , ARN/genética , ARN/metabolismo
4.
Bioinformatics ; 38(6): 1745-1748, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34954795

RESUMEN

SUMMARY: Conformational changes in RNA native ensembles are central to fulfill many of their biological roles. Systematic knowledge of the extent and possible modulators of this conformational diversity is desirable to better understand the relationship between RNA dynamics and function. We have developed CoDNaS-RNA as the first database of conformational diversity in RNA molecules. Known RNA structures are retrieved and clustered to identify alternative conformers of each molecule. Pairwise structural comparisons between all conformers within each cluster allows to measure the variability of the molecule. Additional annotations about structural features, molecular interactions and biological function are provided. All data in CoDNaS-RNA is free to download and available as a public website that can be of interest for researchers in computational biology and other life science disciplines. AVAILABILITY AND IMPLEMENTATION: The data underlying this article are available at http://ufq.unq.edu.ar/codnasrna or https://codnas-rna.bioinformatica.org/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional , ARN , Conformación Molecular , Programas Informáticos
5.
Bioinformatics ; 38(21): 4959-4961, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36111870

RESUMEN

SUMMARY: A collection of conformers that exist in a dynamical equilibrium defines the native state of a protein. The structural differences between them describe their conformational diversity, a defining characteristic of the protein with an essential role in multiple cellular processes. Since most proteins carry out their functions by assembling into complexes, we have developed CoDNaS-Q, the first online resource to explore conformational diversity in homooligomeric proteins. It features a curated collection of redundant protein structures with known quaternary structure. CoDNaS-Q integrates relevant annotations that allow researchers to identify and explore the extent and possible reasons of conformational diversity in homooligomeric protein complexes. AVAILABILITY AND IMPLEMENTATION: CoDNaS-Q is freely accessible at http://ufq.unq.edu.ar/codnasq/ or https://codnas-q.bioinformatica.org/home. The data can be retrieved from the website. The source code of the database can be downloaded from https://github.com/SfrRonaldo/codnas-q.


Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Conformación Proteica , Bases de Datos Factuales
6.
Bioinformatics ; 38(10): 2742-2748, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35561203

RESUMEN

MOTIVATION: After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods because the models should represent a set of conformers instead of single structures. The evolutionary and structural features captured by effective deep learning techniques may unveil the information to generate several diverse conformations from a single sequence. Here, we address the performance of AlphaFold2 predictions obtained through ColabFold under this ensemble paradigm. RESULTS: Using a curated collection of apo-holo pairs of conformers, we found that AlphaFold2 predicts the holo form of a protein in ∼70% of the cases, being unable to reproduce the observed conformational diversity with the same error for both conformers. More importantly, we found that AlphaFold2's performance worsens with the increasing conformational diversity of the studied protein. This impairment is related to the heterogeneity in the degree of conformational diversity found between different members of the homologous family of the protein under study. Finally, we found that main-chain flexibility associated with apo-holo pairs of conformers negatively correlates with the predicted local model quality score plDDT, indicating that plDDT values in a single 3D model could be used to infer local conformational changes linked to ligand binding transitions. AVAILABILITY AND IMPLEMENTATION: Data and code used in this manuscript are publicly available at https://gitlab.com/sbgunq/publications/af2confdiv-oct2021. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas , Unión Proteica , Conformación Proteica , Proteínas/química
7.
Nucleic Acids Res ; 48(D1): D296-D306, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31680160

RESUMEN

The eukaryotic linear motif (ELM) resource is a repository of manually curated experimentally validated short linear motifs (SLiMs). Since the initial release almost 20 years ago, ELM has become an indispensable resource for the molecular biology community for investigating functional regions in many proteins. In this update, we have added 21 novel motif classes, made major revisions to 12 motif classes and added >400 new instances mostly focused on DNA damage, the cytoskeleton, SH2-binding phosphotyrosine motifs and motif mimicry by pathogenic bacterial effector proteins. The current release of the ELM database contains 289 motif classes and 3523 individual protein motif instances manually curated from 3467 scientific publications. ELM is available at: http://elm.eu.org.


Asunto(s)
Secuencias de Aminoácidos , Eucariontes , Apicoplastos/metabolismo , Citoesqueleto , Daño del ADN , Bases de Datos de Proteínas , Fosfotirosina , Dominios Homologos src
8.
Nucleic Acids Res ; 48(D1): D269-D276, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31713636

RESUMEN

The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the 'dark' proteome.


Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/química , Ontologías Biológicas , Curaduría de Datos , Anotación de Secuencia Molecular
9.
PLoS Comput Biol ; 15(2): e1006473, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30763318

RESUMEN

The dynamic nature of technological developments invites us to rethink the learning spaces. In this context, science education can be enriched by the contribution of new computational resources, making the educational process more up-to-date, challenging, and attractive. Bioinformatics is a key interdisciplinary field, contributing to the understanding of biological processes that is often underrated in secondary schools. As a useful resource in learning activities, bioinformatics could help in engaging students to integrate multiple fields of knowledge (logical-mathematical, biological, computational, etc.) and generate an enriched and long-lasting learning environment. Here, we report our recent project in which high school students learned basic concepts of programming applied to solving biological problems. The students were taught the Python syntax, and they coded simple tools to answer biological questions using resources at hand. Notably, these were built mostly on the students' own smartphones, which proved to be capable, readily available, and relevant complementary tools for teaching. This project resulted in an empowering and inclusive experience that challenged differences in social background and technological accessibility.


Asunto(s)
Biología Computacional/educación , Educación/métodos , Aprendizaje Basado en Problemas/métodos , Biología Computacional/métodos , Curriculum , Humanos , Aprendizaje , Instituciones Académicas , Teléfono Inteligente , Programas Informáticos , Estudiantes
10.
Nucleic Acids Res ; 46(D1): D428-D434, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29136216

RESUMEN

Short linear motifs (SLiMs) are protein binding modules that play major roles in almost all cellular processes. SLiMs are short, often highly degenerate, difficult to characterize and hard to detect. The eukaryotic linear motif (ELM) resource (elm.eu.org) is dedicated to SLiMs, consisting of a manually curated database of over 275 motif classes and over 3000 motif instances, and a pipeline to discover candidate SLiMs in protein sequences. For 15 years, ELM has been one of the major resources for motif research. In this database update, we present the latest additions to the database including 32 new motif classes, and new features including Uniprot and Reactome integration. Finally, to help provide cellular context, we present some biological insights about SLiMs in the cell cycle, as targets for bacterial pathogenicity and their functionality in the human kinome.


Asunto(s)
Bases de Datos de Proteínas , Células Eucariotas/metabolismo , Interacciones Huésped-Patógeno/genética , Anotación de Secuencia Molecular , Proteínas/química , Programas Informáticos , Secuencias de Aminoácidos , Animales , Bacterias/genética , Bacterias/metabolismo , Sitios de Unión , Ciclo Celular/genética , Células Eucariotas/citología , Células Eucariotas/microbiología , Células Eucariotas/virología , Hongos/genética , Hongos/metabolismo , Humanos , Internet , Modelos Moleculares , Plantas/genética , Plantas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas/genética , Proteínas/metabolismo , Virus/genética , Virus/metabolismo
11.
Bioinformatics ; 31(14): 2284-93, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25792551

RESUMEN

MOTIVATION: The sensitivity of de novo short linear motif (SLiM) prediction is limited by the number of patterns (the motif space) being assessed for enrichment. QSLiMFinder uses specific query protein information to restrict the motif space and thereby increase the sensitivity and specificity of predictions. RESULTS: QSLiMFinder was extensively benchmarked using known SLiM-containing proteins and simulated protein interaction datasets of real human proteins. Exploiting prior knowledge of a query protein likely to be involved in a SLiM-mediated interaction increased the proportion of true positives correctly returned and reduced the proportion of datasets returning a false positive prediction. The biggest improvement was seen if a short region of the query protein flanking the interaction site was known. AVAILABILITY AND IMPLEMENTATION: All the tools and data used in this study, including QSLiMFinder and the SLiMBench benchmarking software, are freely available under a GNU license as part of SLiMSuite, at: http://bioware.soton.ac.uk.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de Proteína/métodos , Algoritmos , Secuencias de Aminoácidos , Humanos , Mapeo de Interacción de Proteínas , Programas Informáticos
12.
Nucleic Acids Res ; 41(Web Server issue): W398-405, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23729471

RESUMEN

The BeEP Server (http://www.embnet.qb.fcen.uba.ar/embnet/beep.php) is an online resource aimed to help in the endgame of protein structure prediction. It is able to rank submitted structural models of a protein through an explicit use of evolutionary information, a criterion differing from structural or energetic considerations commonly used in other assessment programs. The idea behind BeEP (Best Evolutionary Pattern) is to benefit from the substitution pattern derived from structural constraints present in a set of homologous proteins adopting a given protein conformation. The BeEP method uses a model of protein evolution that takes into account the structure of a protein to build site-specific substitution matrices. The suitability of these substitution matrices is assessed through maximum likelihood calculations from which position-specific and global scores can be derived. These scores estimate how well the structural constraints derived from each structural model are represented in a sequence alignment of homologous proteins. Our assessment on a subset of proteins from the Critical Assessment of techniques for protein Structure Prediction (CASP) experiment has shown that BeEP is capable of discriminating the models and selecting one or more native-like structures. Moreover, BeEP is not explicitly parameterized to find structural similarities between models and given targets, potentially helping to explore the conformational ensemble of the native state.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Programas Informáticos , Evolución Molecular , Internet
13.
Mol Biol Evol ; 30(1): 79-87, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22396525

RESUMEN

It is well established that the conservation of protein structure during evolution constrains sequence divergence. The conservation of certain physicochemical environments to preserve protein folds and then the biological function originates a site-specific structurally constrained substitution pattern. However, protein native structure is not unique. It is known that the native state is better described by an ensemble of conformers in a dynamic equilibrium. In this work, we studied the influence of conformational diversity in sequence divergence and protein evolution. For this purpose, we derived a set of 900 proteins with different degrees of conformational diversity from the PCDB database, a conformer database. With the aid of a structurally constrained protein evolutionary model, we explored the influence of the different conformations on sequence divergence. We found that the presence of conformational diversity strongly modulates the substitution pattern. Although the conformers share several of the structurally constrained sites, 30% of them are conformer specific. Also, we found that in 76% of the proteins studied, a single conformer outperforms the others in the prediction of sequence divergence. It is interesting to note that this conformer is usually the one that binds ligands participating in the biological function of the protein. The existence of a conformer-specific site-substitution pattern indicates that conformational diversity could play a central role in modulating protein evolution. Furthermore, our findings suggest that new evolutionary models and bioinformatics tools should be developed taking into account this substitution bias.


Asunto(s)
Conformación Proteica , Proteínas/química , Simulación por Computador , Bases de Datos de Proteínas , Evolución Molecular , Ligandos , Mutación , Filogenia , Proteínas/genética , Alineación de Secuencia , Análisis de Secuencia/métodos
14.
Nucleic Acids Res ; 40(Database issue): D1250-4, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22139927

RESUMEN

Biology is generating more data than ever. As a result, there is an ever increasing number of publicly available databases that analyse, integrate and summarize the available data, providing an invaluable resource for the biological community. As this trend continues, there is a pressing need to organize, catalogue and rate these resources, so that the information they contain can be most effectively exploited. MetaBase (MB) (http://MetaDatabase.Org) is a community-curated database containing more than 2000 commonly used biological databases. Each entry is structured using templates and can carry various user comments and annotations. Entries can be searched, listed, browsed or queried. The database was created using the same MediaWiki technology that powers Wikipedia, allowing users to contribute on many different levels. The initial release of MB was derived from the content of the 2007 Nucleic Acids Research (NAR) Database Issue. Since then, approximately 100 databases have been manually collected from the literature, and users have added information for over 240 databases. MB is synchronized annually with the static Molecular Biology Database Collection provided by NAR. To date, there have been 19 significant contributors to the project; each one is listed as an author here to highlight the community aspect of the project.


Asunto(s)
Biología , Bases de Datos Factuales , Internet , Integración de Sistemas
15.
Database (Oxford) ; 20232023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37162753

RESUMEN

Proteins are the structural, functional and evolutionary units of cells. On their surface, proteins are shaped into numerous depressions and protrusions that provide unique microenvironments for ligand binding and catalysis. The dynamics, size and chemical properties of these cavities are essential for a mechanistic understanding of protein function. Here, we present CaviDB, a novel database of cavities and their features in known protein structures. It integrates the results of commonly used cavity detection software with protein features derived from sequence, structural and functional analyses. Each protein in CaviDB is linked to its corresponding conformers, which also facilitates the study of conformational changes in cavities. Our initial release includes ∼927 773 distinct proteins, as well as the characterization of 36 136 869 cavities, of which 1 147 034 were predicted to be drug targets. The structural focus of CaviDB provides the ability to compare cavities and their properties from different conformational states of the protein. CaviDB not only aims to provide a comprehensive database that can be used for various aspects of drug design and discovery but also contributes to a better understanding of the fundamentals of protein structure-function relationships. With its unique approach, CaviDB represents an indispensable resource for the large community of bioinformaticians in particular and biologists in general. Database URL https://www.cavidb.org.


Asunto(s)
Proteínas , Programas Informáticos , Ligandos , Proteínas/química , Conformación Proteica , Dominios Proteicos
16.
Curr Protoc ; 3(5): e764, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37184204

RESUMEN

CoDNaS (http://ufq.unq.edu.ar/codnas/) and CoDNaS-Q (http://ufq.unq.edu.ar/codnasq) are repositories of proteins with different degrees of conformational diversity. Following the ensemble nature of the native state, conformational diversity represents the structural differences between the conformers in the ensemble. Each entry in CoDNaS and CoDNaS-Q contains a redundant collection of experimentally determined conformers obtained under different conditions. These conformers represent snapshots of the protein dynamism. While CoDNaS contains examples of conformational diversity at the tertiary level, a recent development, CoDNaS-Q, contains examples at the quaternary level. In the emerging age of accurate protein structure prediction by machine learning approaches, many questions remain open regarding the characterization of protein dynamism. In this context, most bioinformatics resources take advantage of distinct features derived from protein alignments, however, the complexity and heterogeneity of information makes it difficult to recover reliable biological signatures. Here we present five protocols to explore tertiary and quaternary conformational diversity at the individual protein level as well as for the characterization of the distribution of conformational diversity at the protein family level in a phylogenetic context. These protocols can provide curated protein families with experimentally known conformational diversity, facilitating the exploration of sequence determinants of protein dynamism. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Assessing conformational diversity with CoDNaS Alternate Protocol 1: Assessing conformational diversity at the quaternary level with CoDNaS-Q Basic Protocol 2: Exploring conformational diversity in a protein family Alternate Protocol 2: Exploring quaternary conformational diversity in a protein family Basic Protocol 3: Representing conformational diversity in a phylogenetic context.


Asunto(s)
Proteínas , Filogenia , Bases de Datos de Proteínas , Conformación Proteica , Proteínas/genética , Proteínas/química
17.
PLoS One ; 18(9): e0290890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37729217

RESUMEN

Protein regions consisting of arrays of tandem repeats are known to bind other molecular partners, including nucleic acid molecules. Although the interactions between repeat proteins and DNA are already widely explored, studies characterising tandem repeat RNA-binding proteins are lacking. We performed a large-scale analysis of human proteins devoted to expanding the knowledge about tandem repeat proteins experimentally reported as RNA-binding molecules. This work is timely because of the release of a full set of accurate structural models for the human proteome amenable to repeat detection using structural methods. The main goal of our analysis was to build a comprehensive set of human RNA-binding proteins that contain repeats at the sequence or structure level. Our results showed that the combination of sequence and structural methods finds significantly more tandem repeat proteins than either method alone. We identified 219 tandem repeat proteins that bind RNA molecules and characterised the overlap between repeat regions and RNA-binding regions as a first step towards assessing their functional relationship. We observed differences in the characteristics of repeat regions predicted by sequence-based or structure-based methods in terms of their sequence composition, their functions and their protein domains.


Asunto(s)
Conocimiento , Proteínas de Unión al ARN , Humanos , Modelos Estructurales , Proteínas de Unión al ARN/genética , Secuencias Repetidas en Tándem/genética , ARN/genética
18.
Essays Biochem ; 66(7): 945-958, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36468648

RESUMEN

Viruses and their hosts are involved in an 'arms race' where they continually evolve mechanisms to overcome each other. It has long been proposed that intrinsic disorder provides a substrate for the evolution of viral hijack functions and that short linear motifs (SLiMs) are important players in this process. Here, we review evidence in support of this tenet from two model systems: the papillomavirus E7 protein and the adenovirus E1A protein. Phylogenetic reconstructions reveal that SLiMs appear and disappear multiple times across evolution, providing evidence of convergent evolution within individual viral phylogenies. Multiple functionally related SLiMs show strong coevolution signals that persist across long distances in the primary sequence and occur in unrelated viral proteins. Moreover, changes in SLiMs are associated with changes in phenotypic traits such as host range and tropism. Tracking viral evolutionary events reveals that host switch events are associated with the loss of several SLiMs, suggesting that SLiMs are under functional selection and that changes in SLiMs support viral adaptation. Fine-tuning of viral SLiM sequences can improve affinity, allowing them to outcompete host counterparts. However, viral SLiMs are not always competitive by themselves, and tethering of two suboptimal SLiMs by a disordered linker may instead enable viral hijack. Coevolution between the SLiMs and the linker indicates that the evolution of disordered regions may be more constrained than previously thought. In summary, experimental and computational studies support a role for SLiMs and intrinsic disorder in viral hijack functions and in viral adaptive evolution.


Asunto(s)
Proteínas Virales , Secuencias de Aminoácidos , Proteínas Virales/genética , Filogenia
19.
Biochimie ; 197: 113-120, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35183673

RESUMEN

Promiscuous activities have been related to the capacity to catalyze reactions different from those a protein has evolved to sustain. In this work, we rethought the serum albumin's promiscuous behavior using evolutionary and structural analysis. We found that the cross aldol condensation of acetone and p-formylbenzonitrile is a promiscuous reaction conserved in humans serum albumin and in closely related albumins from other mammals. Evolutionary analysis indicates that the residues involved in this promiscuous reaction are evolving under positive selection, an evolutionary pattern indicating a putative functional adaptation. Also, key residues are located in an evolutionary conserved cavity connected with the protein surface with an also conserved tunnel and mutations involving these residues are described in human diseases. Overall, our results suggest that albumin could have evolved to sustain a still unknown biological function among the many others it maintains. Our results could contribute to better characterize the serum albumin family and raise questions about the evolution of protein promiscuity and function.


Asunto(s)
Evolución Molecular , Albúmina Sérica , Adaptación Fisiológica , Animales , Catálisis , Humanos , Mamíferos , Albúmina Sérica/genética
20.
Curr Res Struct Biol ; 3: 146-152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34308370

RESUMEN

Every biologist knows that the word protein describes a group of macromolecules essential to sustain life on Earth. As biologists, we are invariably trained under a protein paradigm established since the early twentieth century. However, in recent years, the term protein unveiled itself as an euphemism to describe the overwhelming heterogeneity of these compounds. Most of our current studies are targeted on carefully selected subsets of proteins, but we tend to think and write about these as representative of the whole population. Here we discuss how seeking for universal definitions and general rules in any arbitrarily segmented study would be misleading about the conclusions. Of course, it is not our purpose to discourage the use of the word protein. Instead, we suggest to embrace the extended universe of proteins to reach a deeper understanding of their full potential, realizing that the term encompasses a group of molecules very heterogeneous in terms of size, shape, chemistry and functions, i.e. the term protein no longer means what it used to.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA