Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(12): 4325-4346, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37738653

RESUMEN

CYP78A, a cytochrome P450 subfamily that includes rice (Oryza sativa L.) BIG GRAIN2 (BG2, CYP78A13) and Arabidopsis thaliana KLUH (KLU, CYP78A5), generate an unknown mobile growth signal (referred to as a CYP78A-derived signal) that increases grain (seed) size. However, the mechanism by which the CYP78A pathway increases grain size remains elusive. Here, we characterized a rice small grain mutant, small grain4 (smg4), with smaller grains than its wild type due to restricted cell expansion and cell proliferation in spikelet hulls. SMG4 encodes a multidrug and toxic compound extrusion (MATE) transporter. Loss of function of SMG4 causes smaller grains while overexpressing SMG4 results in larger grains. SMG4 is mainly localized to endoplasmic reticulum (ER) exit sites (ERESs) and partially localized to the ER and Golgi. Biochemically, SMG4 interacts with coat protein complex Ⅱ (COPⅡ) components (Sar1, Sec23, and Sec24) and CYP78As (BG2, GRAIN LENGTH 3.2 [GL3.2], and BG2-LIKE 1 [BG2L1]). Genetically, SMG4 acts, at least in part, in a common pathway with Sar1 and CYP78As to regulate grain size. In summary, our findings reveal a CYP78As-SMG4-COPⅡ regulatory pathway for grain size in rice, thus providing new insights into the molecular and genetic regulatory mechanism of grain size.


Asunto(s)
Arabidopsis , Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grano Comestible/genética , Semillas/genética , Arabidopsis/genética
2.
Chem Biodivers ; 21(2): e202301333, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38116898

RESUMEN

Propolis is one functional supplement with hundreds of years of usage. However, it's rarely consumed directly for its resinous property. Herein, a pre-treated process which can remove the impurity while preserve its bioactivities is needed to maximise its therapeutic opportunities. In the present study, a membrane-based ultrafiltration process was developed on a KM1812-NF experimental instrument. Using Brazilian green propolis as testing material, all experimental steps and parameters were sequentially optimized. In addition, a mathematical model was developed to fit the process. As a result, the optimum solvent was 60 % ethanol adjusted to pH 8-9, while the optimum MWCO (molecular weight cut-off) value of membrane was 30 KDa. The membrane filtration dynamic model fitted with the function y=(ax+b)/(1+cx+dx2 ). The resulting propolis ultrafiltrate from Brazilian green propolis, termed P30K, contains the similar profile of flavonoids and phenolic acids as raw propolis. Meanwhile, the ORAC (oxygen radical absorbance capacity) value of P30K is 11429.45±1557.58 µM TE/g and the IC50 value of inhibition of fluorescent AGEs (advanced glycation end products) formation is 0.064 mg/mL. Our work provides an innovative alternative process for extraction of active compounds from propolis and reveals P30K as an efficient therapeutic antioxidant.


Asunto(s)
Antioxidantes , Própolis , Antioxidantes/farmacología , Antioxidantes/química , Própolis/farmacología , Própolis/química , Flavonoides/química , Etanol/química , Solventes
3.
Infect Immun ; 91(4): e0038222, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36939354

RESUMEN

Trichinellosis is an important foodborne zoonosis, and no effective treatments are yet available. Nod-like receptor (NLR) plays a critical role in the host response against nematodes. Therefore, we aimed to explore the role of the NLRP3 inflammasome (NLRP3) during the adult, migrating, and encysted stages of Trichinella spiralis infection. The mice were treated with the specific NLRP3 inhibitor MCC950 after inoculation with T. spiralis. Then, the role that NLRP3 plays during T. spiralis infection of mice was evaluated using enzyme-linked immunosorbent assay (ELISA), Western blotting, flow cytometry, histopathological evaluation, bone marrow-derived macrophage (BMDM) stimulation, and immunofluorescence. The in vivo results showed that NLRP3 enhanced the Th1 immune response in the adult and migrating stages and weakened the Th2 immune response in the encysted stage. NLRP3 promoted the release of proinflammatory factors (interferon gamma [IFN-γ]) and suppressed the release of anti-inflammatory factors (interleukin 4 [IL-4]). Pathological changes were also improved in the absence of NLRP3 in mice during T. spiralis infection. Importantly, a significant reduction in adult worm burden and muscle larvae burden at 7 and 35 days postinfection was observed in mice treated with the specific NLRP3 inhibitor MCC950. In vitro, we first demonstrated that NLRP3 in macrophages can be activated by T. spiralis proteins and promotes IL-1ß and IL-18 release. This study revealed that NLRP3 is involved in the host response to T. spiralis infection and that targeted inhibition of NLRP3 enhanced the Th2 response and accelerated T. spiralis expulsion. These findings may help in the development of protocols for controlling trichinellosis.


Asunto(s)
Trichinella spiralis , Triquinelosis , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR , Antígenos Helmínticos , Ratones Endogámicos BALB C
4.
Plant Mol Biol ; 111(3): 291-307, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36469200

RESUMEN

KEY MESSAGE: We identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm. Higher plants accumlate large amounts of seed storage proteins (SSPs). However, mechanisms underlying SSP trafficking are largely unknown, especially the ER-Golgi anterograde process. Here, we showed that a rice glutelin precursor accumulation13 (gpa13) mutant exhibited floury endosperm and overaccumulated glutelin precursors, which phenocopied the reported RNAi-Sar1abc line. Molecular cloning revealed that the gpa13 allele encodes a mutated Sar1c (mSar1c) with a deletion of two conserved amino acids Pro134 and Try135. Knockdown or knockout of Sar1c alone caused no obvious phenotype, while overexpression of mSar1c resulted in seedling lethality similar to the gpa13 mutant. Transient expression experiment in tobacco combined with subcellular fractionation experiment in gpa13 demonstrated that the expression of mSar1c affects the subcellular distribution of all Sar1 isoforms and Sec23c. In addition, mSar1c failed to interact with COPII component Sec23. Conversely, mSar1c competed with Sar1a/b/d to interact with guanine nucleotide exchange factor Sec12. Together, we identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm.


Asunto(s)
Oryza , Proteínas de Almacenamiento de Semillas , Proteínas de Almacenamiento de Semillas/metabolismo , Oryza/genética , Transporte de Proteínas/genética , Glútenes/genética , Retículo Endoplásmico/metabolismo
5.
Plant Physiol ; 189(2): 567-584, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35234957

RESUMEN

Vesicular trafficking plays critical roles in cell expansion in yeast and mammals, but information linking vesicular trafficking and cell expansion in plants is limited. Here, we isolated and characterized a rice (Oryza sativa) mutant, decreased plant height 1-1 (dph1-1), which exhibited a wide spectrum of developmental phenotypes, including reduced plant height and smaller panicles and grains. Cytological analysis revealed that limited cell expansion was responsible for the dph1-1 mutant phenotype compared to the wild-type. Map-based cloning revealed that DPH1 encodes a plant-specific protein, OsSCD2, which is homologous to Arabidopsis (Arabidopsis thaliana) STOMATAL CYTOKINESIS DEFECTIVE2 (SCD2). Subcellular localization revealed that OsSCD2 is associated with clathrin. Confocal microscopy showed that the dph1-1 mutant has defective endocytosis and post-Golgi trafficking. Biochemical and confocal data indicated that OsSCD2 physically interacts with OsSCD1 and that they are associated with intracellular structures that colocalize with microtubules. Furthermore, we found that cellulose synthesis was affected in the dph1-1 mutant, evidenced by reduced cellulose synthase gene accumulation at the transcript and protein levels, most likely resulting from an impaired localization pattern. Our results suggest that OsSCD2 is involved in clathrin-related vesicular trafficking with an important role in maintaining plant growth in rice.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/genética , Clatrina/metabolismo , Citocinesis/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo
6.
Plant Cell ; 32(3): 758-777, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31949008

RESUMEN

Dense vesicles (DVs) are vesicular carriers, unique to plants, that mediate post-Golgi trafficking of storage proteins to protein storage vacuoles (PSVs) in seeds. However, the molecular mechanisms regulating the directional targeting of DVs to PSVs remain elusive. Here, we show that the rice (Oryza sativa) glutelin precursor accumulation5 (gpa5) mutant is defective in directional targeting of DVs to PSVs, resulting in discharge of its cargo proteins into the extracellular space. Molecular cloning revealed that GPA5 encodes a plant-unique phox-homology domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN. We show that GPA5 is a membrane-associated protein capable of forming homodimers and that it is specifically localized to DVs in developing endosperm. Colocalization, biochemical, and genetic evidence demonstrates that GPA5 acts in concert with Rab5a and VPS9a to regulate DV-mediated post-Golgi trafficking to PSVs. Furthermore, we demonstrated that GPA5 physically interacts with a class C core vacuole/endosome tethering complex and a seed plant-specific VAMP727-containing R-soluble N-ethylmaleimide sensitive factor attachment protein receptor complex. Collectively, our results suggest that GPA5 functions as a plant-specific effector of Rab5a required for mediating tethering and membrane fusion of DVs with PSVs in rice endosperm.


Asunto(s)
Aparato de Golgi/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Endospermo/metabolismo , Glútenes/metabolismo , Aparato de Golgi/ultraestructura , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Mutación/genética , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Plantas/química , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Proteínas de Almacenamiento de Semillas/química , Vacuolas/metabolismo , Vacuolas/ultraestructura
7.
Molecules ; 28(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985695

RESUMEN

Unveiling the structural evolution of single-crystalline compounds based on certain building units may help greatly in guiding the design of complex structures. Herein, a series of praseodymium antimony oxohalide crystals have been isolated under solvothermal conditions via adjusting the solvents used, that is, [HN(CH2CH3)3][FeII(2,2'-bpy)3][Pr4Sb12O18Cl15]·EtOH (1) (2,2'-bpy = 2,2'-bipyridine), [HN(CH2CH3)3][FeII(2,2'-bpy)3]2[Pr4Sb12O18Cl14)2Cl]·N(CH2CH3)3·2H2O (2), and (H3O)[Pr4Sb12O18Cl12.5(TEOA)0.5]·2.5EtOH (3) (TEOA = mono-deprotonated triethanolamine anion). Single-crystal X-ray diffraction analysis revealed that all the three structures feature an anionic zig-zag chain of [Pr4Sb12O18Cl15-x]n as the tertiary building unit (TBU), which is formed by interconnections of praseodymium antimony oxochloride clusters (denoted as {Pr4Sb12}) as secondary building units. Interestingly, different arrangements or linkages of chain-like TBUs result in one-dimensional, two-dimensional layered, and three-dimensional structures of 1, 2, and 3, respectively, thus demonstrating clearly the structural evolution of metal oxohalide crystals. The title compounds have been characterized by elemental analysis, powder X-ray diffraction, thermogravimetric analysis, and UV-Vis spectroscopy, and the photodegradation for methyl blue in an aqueous solution of compound 1 has been preliminarily studied. This work offers a way to deeply understand the assembly process of intricate lanthanide-antimony(III) oxohalide structures at the atomic level.

8.
Plant Physiol ; 187(4): 2174-2191, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33871646

RESUMEN

Protein storage vacuoles (PSVs) are unique organelles that accumulate storage proteins in plant seeds. Although morphological evidence points to the existence of multiple PSV-trafficking pathways for storage protein targeting, the molecular mechanisms that regulate these processes remain mostly unknown. Here, we report the functional characterization of the rice (Oryza sativa) glutelin precursor accumulation7 (gpa7) mutant, which over-accumulates 57-kDa glutelin precursors in dry seeds. Cytological and immunocytochemistry studies revealed that the gpa7 mutant exhibits abnormal accumulation of storage prevacuolar compartment-like structures, accompanied by the partial mistargeting of glutelins to the extracellular space. The gpa7 mutant was altered in the CCZ1 locus, which encodes the rice homolog of Arabidopsis (Arabidopsis thaliana) CALCIUM CAFFEINE ZINC SENSITIVITY1a (CCZ1a) and CCZ1b. Biochemical evidence showed that rice CCZ1 interacts with MONENSIN SENSITIVITY1 (MON1) and that these proteins function together as the Rat brain 5 (Rab5) effector and the Rab7 guanine nucleotide exchange factor (GEF). Notably, loss of CCZ1 function promoted the endosomal localization of vacuolar protein sorting-associated protein 9 (VPS9), which is the GEF for Rab5 in plants. Together, our results indicate that the MON1-CCZ1 complex is involved in post-Golgi trafficking of rice storage protein through a Rab5- and Rab7-dependent pathway.


Asunto(s)
Glútenes/genética , Glútenes/metabolismo , Oryza/genética , Oryza/metabolismo , Semillas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , China , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , Semillas/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/genética
9.
Plant Physiol ; 187(4): 2192-2208, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33624820

RESUMEN

Dense vesicles (DVs) are Golgi-derived plant-specific carriers that mediate post-Golgi transport of seed storage proteins in angiosperms. How this process is regulated remains elusive. Here, we report a rice (Oryza sativa) mutant, named glutelin precursor accumulation8 (gpa8) that abnormally accumulates 57-kDa proglutelins in the mature endosperm. Cytological analyses of the gpa8 mutant revealed that proglutelin-containing DVs were mistargeted to the apoplast forming electron-dense aggregates and paramural bodies in developing endosperm cells. Differing from previously reported gpa mutants with post-Golgi trafficking defects, the gpa8 mutant showed bent Golgi bodies, defective trans-Golgi network (TGN), and enlarged DVs, suggesting a specific role of GPA8 in DV biogenesis. We demonstrated that GPA8 encodes a subunit E isoform 1 of vacuolar H+-ATPase (OsVHA-E1) that mainly localizes to TGN and the tonoplast. Further analysis revealed that the luminal pH of the TGN and vacuole is dramatically increased in the gpa8 mutant. Moreover, the colocalization of GPA1 and GPA3 with TGN marker protein in gpa8 protoplasts was obviously decreased. Our data indicated that OsVHA-E1 is involved in endomembrane luminal pH homeostasis, as well as maintenance of Golgi morphology and TGN required for DV biogenesis and subsequent protein trafficking in rice endosperm cells.


Asunto(s)
Glútenes/metabolismo , Oryza/genética , Oryza/metabolismo , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/fisiología , Semillas/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , China , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Glútenes/genética , Mutación , Isoformas de Proteínas/genética , Semillas/genética , Proteínas de Transporte Vesicular/genética
10.
BMC Gastroenterol ; 22(1): 273, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650532

RESUMEN

BACKGROUND: I-125 seeds brachytherapy (ISB) has been used to improve the clinical effectiveness of transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC). We aim to appraise the safety and clinical efficacy of combined ISB and TACE for the treatment of subcapsular HCC. MATERIALS AND METHODS: A retrospective investigative study extending from January 2017 to December 2020, involved individuals suffering from subcapsular HCC, who were subjected to TACE treatment with or without ISB in our center. The clinical effectiveness was compared between 2 groups. RESULTS: Sixty-four patients, in total, with subcapsular HCC had to undergo TACE with (n = 32) or without (n = 32) ISB in our center. After CT-guided ISB, only 2 (6.3%) patients experienced a self-limited pneumothorax. Combined treatment resulted in a significantly higher complete response (56.3% vs. 18.8%, P = 0.002) and total response (90.7% vs. 59.4%, P = 0.004) rates than that of TACE alone. In comparison to the TACE alone group, the median progression-free survival was substantially longer in the combined treatment group (11 months vs. 5 months, P = 0.016). Further, 15 and 28 patients in combined and TACE alone groups respectively died within the follow-up. The median OS was comparable between combined and TACE alone groups (22 months vs. 18 months, P = 0.529). CONCLUSIONS: Combined TACE and ISB therapy is a safe treatment method for individuals suffering from subcapsular HCC. When compared, combined treatment had significantly enhanced clinical efficacy as a subcapsular HCC therapy, in comparison to TACE alone.


Asunto(s)
Braquiterapia , Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/patología , Quimioembolización Terapéutica/métodos , Humanos , Radioisótopos de Yodo/uso terapéutico , Neoplasias Hepáticas/patología , Estudios Retrospectivos
11.
Exp Parasitol ; 238: 108264, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35523284

RESUMEN

Trichinellosis is a food-borne zoonotic parasitic disease that causes serious harm to human health and the pig breeding industry. However, there are reports that Trichinella spiralis (T. spiralis) infection can treat autoimmune diseases, including enteritis and experimental autoimmune encephalitis (EAE). However, research on the mechanism of T. spiralis infection in infectious enteritis has not been fully elucidated. Therefore, this experiment used Citrobacter rodentium (C. rodentium) to induce colitis in mouse models and explored its underlying mechanisms. In this experiment, a total of 72 C57BL/6 mice were randomly divided into four groups. Experimental mice in the TS and TS + CR groups were orally inoculated with individual T. spiralis larvae. At 21 days postinfection (dpi) with T. spiralis, experimental animals in the CR and TS + CR groups were inoculated by orogastric gavage with C. rodentium. The control group received PBS only. The results indicated that the weight loss and macroscopic and microscopic colon damage of mice in the TS + CR group were significantly decreased compared with those observed in the CR group. The results of flow cytometry showed that the expression levels of IL-4, IL-10 and CD4+CD25+Foxp3+ Tregs were increased (P < 0.05), while the expression levels of IFN-γ, IL-12 and IL-17 were decreased in the spleens and MLNs of the TS + CR experimental mice compared with the colitis model mice. ELISA results revealed that the TS + CR group not only elicited a strong IgG1 response (P < 0.01) but also a low level of IgG2a response (P < 0.05) relative to the CR group. The above results demonstrated that prior exposure of mice to T. spiralis infection ameliorated the severity of C. rodentium-induced infectious colitis.


Asunto(s)
Colitis , Trichinella spiralis , Triquinelosis , Animales , Ratones , Citrobacter rodentium , Ratones Endogámicos C57BL , Triquinelosis/parasitología
12.
J Integr Plant Biol ; 63(5): 834-847, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33283410

RESUMEN

Pentatricopeptide repeat (PPR) proteins, composing one of the largest protein families in plants, are involved in RNA binding and regulation of organelle RNA metabolism at the post-transcriptional level. Although several PPR proteins have been implicated in endosperm development in rice (Oryza sativa), the molecular functions of many PPRs remain obscure. Here, we identified a rice endosperm mutant named floury endosperm 18 (flo18) with pleiotropic defects in both reproductive and vegetative development. Map-based cloning and complementation tests showed that FLO18 encodes a mitochondrion-targeted P-type PPR protein with 15 PPR motifs. Mitochondrial function was disrupted in the flo18 mutant, as evidenced by decreased assembly of Complex I in the mitochondrial electron transport chain and altered mitochondrial morphology. Loss of FLO18 function resulted in defective 5'-end processing of mitochondrial nad5 transcripts encoding subunit 5 of nicotinamide adenine dinucleotide hydrogenase. These results suggested that FLO18 is involved in 5'-end processing of nad5 messenger RNA and plays an important role in mitochondrial function and endosperm development.


Asunto(s)
Endospermo/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oryza/genética , Proteínas de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo
13.
Plant Physiol ; 180(1): 381-391, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30796160

RESUMEN

Ubiquitination and deubiquitination are reversible processes that play crucial roles in regulating organ size in plants. However, information linking deubiquitination and seed size in rice (Oryza sativa) is limited. Here, we characterized a dominant large-grain mutant, large grain1-D (lg1-D), with a 30.8% increase in seed width and a 34.5% increase in 1,000-grain weight relative to the wild type. The lg1-D mutant had more cells oriented in the lateral direction of the spikelet hull compared with the wild type. Map-based cloning showed that LG1 encodes a constitutively expressed ubiquitin-specific protease15 (OsUBP15) that possesses deubiquitination activity in vitro. Loss-of-function and down-regulated expression of OsUBP15 produced narrower and smaller grains than the control. A set of in vivo experiments indicated that the mutant Osubp15 had enhanced protein stability relative to wild-type OsUBP15. Further experiments verified that OsDA1 directly interacted with OsUBP15. Genetic data indicated that OsUBP15 and GRAIN WIDTH 2 (GW2) were not independent in regulating grain width and size. In summary, we identified OsUBP15 as a positive regulator of grain width and size in rice and provide a promising strategy for improvement of grain yield by pyramiding OsUBP15 and gw2.


Asunto(s)
Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Proteasas Ubiquitina-Específicas/metabolismo , Proliferación Celular , Clonación Molecular , Estabilidad de Enzimas , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/genética , Células Vegetales , Plantas Modificadas Genéticamente , Semillas/citología , Semillas/genética , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación
14.
J Exp Bot ; 71(3): 808-822, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31624827

RESUMEN

Storage protein is the most abundant nutritional component in soybean seed. Morphology-based evidence has verified that storage proteins are initially synthesized on the endoplasmic reticulum, and then follow the Golgi-mediated pathway to the protein storage vacuole. However, the molecular mechanisms of storage protein trafficking in soybean remain unknown. Here, we clone the soybean homologs of Rab5 and its guanine nucleotide exchange factor (GEF) VPS9. GEF activity combined with yeast two-hybrid assays demonstrated that GmVPS9a2 might specifically act as the GEF of the canonical Rab5, while GmVPS9b functions as a common activator for all Rab5s. Subcellular localization experiments showed that GmRab5a was dually localized to the trans-Golgi network and pre-vacuolar compartments in developing soybean cotyledon cells. Expression of a dominant negative variant of Rab5a, or RNAi of either Rab5a or GmVPS9s, significantly disrupted trafficking of mRFP-CT10, a cargo marker for storage protein sorting, to protein storage vacuoles in maturing soybean cotyledons. Together, our results systematically revealed the important role of GmRab5a and its GEFs in storage protein trafficking, and verified the transient expression system as an efficient approach for elucidating storage protein trafficking mechanisms in seed.


Asunto(s)
Glycine max/enzimología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Oryza/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Glycine max/crecimiento & desarrollo , Proteínas de Unión al GTP rab5/genética
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(5): 419-424, 2020 May.
Artículo en Zh | MEDLINE | ID: mdl-32434634

RESUMEN

OBJECTIVE: To study the clinical features of coronavirus disease 2019 (COVID-19) in children aged <18 years. METHODS: A retrospective analysis was performed from the medical data of 23 children, aged from 3 months to 17 years and 8 months, who were diagnosed with COVID-19 in Jiangxi, China from January 21 to February 29, 2020. RESULTS: Of the 23 children with COVID-19, 17 had family aggregation. Three children (13%) had asymptomatic infection, 6 (26%) had mild type, and 14 (61%) had common type. Among these 23 children, 16 (70%) had fever, 11 (48%) had cough, 8 (35%) had fever and cough, and 8 (35%) had wet rales in the lungs. The period from disease onset or the first nucleic acid-positive detection of SARS-CoV-2 to the virus nucleic acid negative conversion was 6-24 days (median 12 days). Of the 23 children, 3 had a reduction in total leukocyte count, 2 had a reduction in lymphocytes, 2 had an increase in C-reactive protein, and 2 had an increase in D-dimer. Abnormal pulmonary CT findings were observed in 12 children, among whom 9 had patchy ground-glass opacities in both lungs. All 23 children received antiviral therapy and were recovered. CONCLUSIONS: COVID-19 in children aged <18 years often occurs with family aggregation, with no specific clinical manifestation and laboratory examination results. Most of these children have mild symptoms and a good prognosis. Epidemiological history is of particular importance in the diagnosis of COVID-19 in children aged <18 years.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Pandemias , Neumonía Viral , Adolescente , COVID-19 , Niño , Preescolar , China , Humanos , Lactante , Estudios Retrospectivos , SARS-CoV-2
16.
BMC Plant Biol ; 19(1): 295, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31277576

RESUMEN

BACKGROUND: As the major storage protein in rice seeds, glutelins are synthesized at the endoplasmic reticulum (ER) as proglutelins and transported to protein storage vacuoles (PSVs) called PBIIs (Protein body IIs), where they are cleaved into mature forms by the vacuolar processing enzymes. However, the molecular mechanisms underlying glutelin trafficking are largely unknown. RESULTS: In this study, we report a rice mutant, named glutelin precursor accumulation6 (gpa6), which abnormally accumulates massive proglutelins. Cytological analyses revealed that in gpa6 endosperm cells, proglutelins were mis-sorted, leading to the presence of dense vesicles (DVs) and the formation paramural bodies (PMBs) at the apoplast, consequently, smaller PBII were observed. Mutated gene in gpa6 was found to encode a Na+/H+ antiporter, OsNHX5. OsNHX5 is expressed in all tissues analyzed, and its expression level is much higher than its closest paralog OsNHX6. The OsNHX5 protein colocalizes to the Golgi, the trans-Golgi network (TGN) and the pre-vacuolar compartment (PVC) in tobacco leaf epidermal cells. In vivo pH measurements indicated that the lumens of Golgi, TGN and PVC became more acidic in gpa6. CONCLUSIONS: Our results demonstrated an important role of OsNHX5 in regulating endomembrane luminal pH, which is essential for seed storage protein trafficking in rice.


Asunto(s)
Glútenes/metabolismo , Homeostasis , Oryza/metabolismo , Endospermo/metabolismo , Aparato de Golgi/fisiología , Concentración de Iones de Hidrógeno , Transporte de Proteínas , Vacuolas/metabolismo
18.
Zhonghua Nan Ke Xue ; 23(1): 43-48, 2017 Jan.
Artículo en Zh | MEDLINE | ID: mdl-29658236

RESUMEN

OBJECTIVE: To evaluate the safety, efficacy and tolerability of China-made sildenafil citrate (Jinge) in the treatment of ED. METHODS: We conducted a multi-center, randomized, double-blind and placebo-controlled clinical trial among 222 ED patients in five urological or andrological clinics of China. The patients were randomly assigned to receive sildenafil citrate (SC, n = 111) or placebo (n = 111) for 8 weeks. We obtained and analyzed the demographic and clinical characteristics of the patients, the scores of International Index of Erectile Function (IIEF), the success rate of sexual intercourse, and the incidence of adverse events. RESULTS: No statistically significant differences were found between the patients of the SC and those of the placebo group in the mean age (ï¼»47.2±11.32ï¼½ yr vs ï¼»46.67±13.08ï¼½ yr, P>0.05), psychological etiology (27.93% vs 23.42%, P>0.05), organic etiology (21.62% vs 29.73%, P>0.05) or mixed etiology (50.45% vs 46.85%, P>0.05), nor in height, weight, nationality, or history of smoking, drinking or allergy. Compared with the placebo controls, the SC-treated patients showed significant increases in the excellence rate of effectiveness (29.91% vs 78.90%, P<0.01), success rate of sexual intercourse (29.16% vs 63.87%, P<0.01), and total effectiveness rate (34.58% vs 77.98%, P<0.01). The effectiveness rates on organic, psychogenic and mixed types ED were remarkably higher in the SC group (64.52%, 83.33%, and 82.14%) than in the placebo control (46.15%, 21.21%, and 25.00%) (P<0.01). Mild or temporary adverse events were observed in 32 cases in the SC group as compared with 13 in the placebo control. CONCLUSIONS: China-made sildenafil citrate is an effective, safe and well-tolerated drug for ED of different etiologies in the Chinese population.


Asunto(s)
Disfunción Eréctil/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Citrato de Sildenafil/uso terapéutico , Anciano , China , Coito , Método Doble Ciego , Composición de Medicamentos , Disfunción Eréctil/etiología , Humanos , Masculino , Fumar , Resultado del Tratamiento
19.
Sensors (Basel) ; 16(1)2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26797616

RESUMEN

Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

20.
Neuro Endocrinol Lett ; 35(8): 684-90, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25702296

RESUMEN

OBJECTIVE: To examine the effect of levothyroxine (L-T4), vitamin E or both on oxidative stress status and hippocampal apoptosis in a propylthiouracil (PTU)-induced hypothyroid rat model. METHODS: Sprague-Dawley rats were randomly divided into five groups: Control, PTU+PTU+L-T4+PTU+Vit E, PTU+Vit E+L-T4. In each group we assessed levels of serum triiodothyronine (T3), tetraiodothyronine (T4), thyroid stimulating hormone (TSH), hippocampus cellular apoptosis index (AI), hippocampus nicotinamide adenine denucleotide hydrogen (NADPH)oxidase and superoxide dismutase (SOD). RESULTS: 1) Compared with the control group, NADPH oxidase levels were significantly increased, and SOD levels were significantly reduced in the PTU groups (p<0.05). 2) Compared to the PTU group, SOD levels were significantly increased in the PTU+Vit E and PTU+L-T4+Vit E group (p<0.05). NADPH oxidase levels were significantly decreased in the PTU+L-T4, PTU+Vit E and PTU+ L-T4+Vit E group (p<0.05). 3) Compared with the control group, hippocampus AI increased significantly in the PTU group (p<0.05). Compared with the PTU group, hippocampus AI was significantly reduced in the PTU+L-T4 group and PTU+L-T4+Vit E group (p<0.05). 4) Hippocampus AI was positively correlated with NADPH oxidase expression levels in hippocampus tissue (r=0.644, p<0.01). CONCLUSION: Levothyroxine replacement therapy combined with vitamin E reduces hippocampus AI by improving oxidative stress. This study suggested that the mechanisms of hippocampus tissue injury in a hypothyroid rat model is related to hippocampus apoptosis from increased oxidative stress.


Asunto(s)
Apoptosis/efectos de los fármacos , Hipocampo/metabolismo , Hipotiroidismo/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Tiroxina/farmacología , Vitamina E/farmacología , Animales , Apoptosis/fisiología , Suplementos Dietéticos , Modelos Animales de Enfermedad , Quimioterapia Combinada , Hipocampo/efectos de los fármacos , Hipocampo/patología , Terapia de Reemplazo de Hormonas , Masculino , Estrés Oxidativo/fisiología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Tiroxina/administración & dosificación , Vitamina E/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA