Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Planta ; 260(3): 65, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073585

RESUMEN

MAIN CONCLUSION: This study revealed the transcriptome-wide m6A methylation profile under drought stress and found that TaETC9 might regulate drought tolerance through mediating RNA methylation in wheat. Drought is one of the most destructive environmental constraints limiting crop growth and development. N6-methyladenosine (m6A) is a prevalent and important post-transcriptional modification in various eukaryotic RNA molecules, playing the crucial role in regulating drought response in plants. However, the significance of m6A in wheat (Triticum aestivum L.), particularly its involvment in drought response, remains underexplored. In this study, we investigated the transcriptome-wide m6A profile under drought stress using parallel m6A immunoprecipitation sequencing (MeRIP-seq). Totally, 4221 m6A peaks in 3733 m6A-modified genes were obtained, of which 373 methylated peaks exhibited differential expression between the control (CK) and drought-stressed treatments. These m6A loci were significantly enriched in proximity to stop codons and within the 3'-untranslated region. Integration of MeRIP-seq and RNA-seq revealed a positive correlation between m6A methylation and mRNA abundance and the genes displaying both differential methylation and expression were obtained. Finally, qRT-PCR analyses were further performed and the results found that the m6A-binding protein (TaETC9) showed significant up-regulation, while the m6A demethylase (TaALKBH10B) was significantly down-regulated under drought stress, contributing to increased m6A levels. Furthermore, the loss-of-function mutant of TaECT9 displayed significantly higher drought sensitivity compared to the wild type, highlighting its role in regulating drought tolerance. This study reported the first wheat m6A profile associated with drought stress, laying the groundwork for unraveling the potential role of RNA methylation in drought responses and enhancing stress tolerance in wheat through epigenetic approaches.


Asunto(s)
Adenosina , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Transcriptoma , Triticum , Triticum/genética , Triticum/fisiología , Metilación , Adenosina/análogos & derivados , Adenosina/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
New Phytol ; 242(5): 2115-2131, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38358006

RESUMEN

Drought is one of the major environmental constraints for wheat production world-wide. As the progenitor and genetic reservoir of common wheat, emmer wheat is considered as an invaluable gene pool for breeding drought-tolerant wheat. Combining GWAS and eGWAS analysis of 107 accessions, we identified 86 QTLs, 105 462 eQTLs as well as 68 eQTL hotspots associating with drought tolerance (DT) in emmer wheat. A complex regulatory network composed of 185 upstream regulator and 2432 downstream drought-responsive candidates was developed, of which TtOTS1 was found to play a negative effect in determining DT through affecting root development. This study sheds light on revealing the genetic basis underlying DT, which will provide the indispensable genes and germplasm resources for elite drought tolerance wheat improvement and breeding.


Asunto(s)
Resistencia a la Sequía , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Triticum , Adaptación Fisiológica/genética , Resistencia a la Sequía/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Polimorfismo de Nucleótido Simple , Triticum/genética , Triticum/fisiología
3.
BMC Genomics ; 23(1): 724, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284277

RESUMEN

BACKGROUND: Salt stress is one of the most destructive environmental factors limiting crop growth and development. MicroRNAs (miRNAs) are a class of conserved endogenous small non-coding RNAs, playing the crucial role in regulating salt response and tolerance in plants. However, the miRNAs in wild emmer wheat, especially the key and specific salt-responsive miRNAs are not well studied. RESULTS: Here, we performed small RNA, transcriptome, and degradome sequencing of both of salt-tolerance (ST) and salt-sensitive (SS) wild emmer genotypes to identify the miRNA-mRNA modules associating with salt tolerance. Totally, 775 miRNAs, including 361 conserved known miRNAs and 414 novel miRNAs were detected. Differential expression analysis identified 93 salt-responsive miRNAs under salt stress. Combined with RNA-seq and degradome sequencing analysis, 224 miRNA-mRNA modules displayed the complete opposite expression trends between ST and SS genotypes, most of which functionally enriched into ROS homeostasis maintaining, osmotic pressure modulating, and root growth and development. Finally, the qRT-PCR and a large-scale yeast functional screening were also performed to initially validate the expression pattern and function of candidate genes. CONCLUSIONS: This study reported the key and specific miRNA-mRNA modules associated with salt tolerance in wild emmer, which lay the foundation for improving the salt tolerance in cultivated emmer and bread wheat through miRNA engineering approach.


Asunto(s)
MicroARNs , Tolerancia a la Sal , Tolerancia a la Sal/genética , Triticum/genética , Triticum/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN de Planta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética
4.
BMC Plant Biol ; 22(1): 117, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35291942

RESUMEN

BACKGROUND: CCCH transcription factors are important zinc finger transcription factors involved in the response to biotic and abiotic stress and physiological and developmental processes. Barley (Hordeum vulgare) is an agriculturally important cereal crop with multiple uses, such as brewing production, animal feed, and human food. The identification and assessment of new functional genes are important for the molecular breeding of barley. RESULTS: In this study, a total of 53 protein-encoding CCCH genes unevenly dispersed on seven different chromosomes were identified in barley. Phylogenetic analysis categorized the barley CCCH genes (HvC3Hs) into eleven subfamilies according to their distinct features, and this classification was supported by intron-exon structure and conserved motif analysis. Both segmental and tandem duplication contributed to the expansion of CCCH gene family in barley. Genetic variation of HvC3Hs was characterized using publicly available exome-capture sequencing datasets. Clear genetic divergence was observed between wild and landrace barley populations in HvC3H genes. For most HvC3Hs, nucleotide diversity and the number of haplotype polymorphisms decreased during barley domestication. Furthermore, the HvC3H genes displayed distinct expression profiles for different developmental processes and in response to various types of stresses. The HvC3H1, HvC3H2 and HvC3H13 of arginine-rich tandem CCCH zinc finger (RR-TZF) genes were significantly induced by multiple types of abiotic stress and/or phytohormone treatment, which might make them as excellent targets for the molecular breeding of barley. CONCLUSIONS: Overall, our study provides a comprehensive characterization of barley CCCH transcription factors, their diversity, and their biological functions.


Asunto(s)
Hordeum , Regulación de la Expresión Génica de las Plantas , Haplotipos/genética , Hordeum/genética , Hordeum/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Dedos de Zinc/genética
5.
BMC Plant Biol ; 22(1): 450, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36127641

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) are emerging as the important regulators involving in growth and development as well as stress response in plants. However, current lncRNA studies were mainly performed at the individual level and the significance of it is not well understood in wheat. RESULTS: In this study, the lncRNA landscape of wheat spike was characterized through analysing a total of 186 spike RNA-seq datasets from 93 wheat genotypes. A total of 35,913 lncRNAs as well as 1,619 lncRNA-mRNA pairs comprised of 443 lncRNAs and 464 mRNAs were obtained. Compared to coding genes, these lncRNAs displayed rather low conservation among wheat and other gramineous species. Based on re-sequencing data, the genetic variations of these lncRNA were investigated and obvious genetic bottleneck were found on them during wheat domestication process. Furthermore, 122 lncRNAs were found to act as ceRNA to regulate endogenous competition. Finally, association and co-localization analysis of the candidate lncRNA-mRNA pairs identified 170 lncRNAs and 167 target mRNAs significantly associated with spike-related traits, including lncRNA.127690.1/TraesCS2A02G518500.1 (PMEI) and lncRNA.104854.1/TraesCS6A02G050300.1 (ATG5) associated with heading date and spike length, respectively. CONCLUSIONS: This study reported the lncRNA landscape of wheat spike through the population transcriptome analysis, which not only contribute to better understand the wheat evolution from the perspective of lncRNA, but also lay the foundation for revealing roles of lncRNA playing in spike development.


Asunto(s)
ARN Largo no Codificante , Perfilación de la Expresión Génica , ARN Largo no Codificante/genética , ARN Mensajero/genética , Transcriptoma , Triticum/genética
6.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361820

RESUMEN

The hyperosmolality-gated calcium-permeable channel gene family (OSCA) is one kind of conserved osmosensors, playing a crucial role in maintaining ion and water homeostasis and protecting cellular stability from the damage of hypertonic stress. Although it has been systematically characterized in diverse plants, it is necessary to explore the role of the OSCA family in barley, especially its importance in regulating abiotic stress response. In this study, a total of 13 OSCA genes (HvOSCAs) were identified in barley through an in silico genome search method, which were clustered into 4 clades based on phylogenetic relationships with members in the same clade showing similar protein structures and conserved motif compositions. These HvOSCAs had many cis-regulatory elements related to various abiotic stress, such as MBS and ARE, indicating their potential roles in abiotic stress regulation. Furthermore, their expression patterns were systematically detected under diverse stresses using RNA-seq data and qRT-PCR methods. All of these 13 HvOSCAs were significantly induced by drought, cold, salt and ABA treatment, demonstrating their functions in osmotic regulation. Finally, the genetic variations of the HvOSCAs were investigated using the re-sequencing data, and their nucleotide diversity in wild barley and landrace populations were 0.4966 × 10-3 and 0.391 × 10-3, respectively, indicating that a genetic bottleneck has occurred in the OSCA family during the barley evolution process. This study evaluated the genomic organization, evolutionary relationship and genetic expression of the OSCA family in barley, which not only provides potential candidates for further functional genomic study, but also contributes to genetically improving stress tolerance in barley and other crops.


Asunto(s)
Hordeum , Hordeum/genética , Hordeum/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Sequías , Estrés Fisiológico/genética , Proteínas de Plantas/metabolismo
7.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35163325

RESUMEN

RNA/DNA difference (RDD) is a post-transcriptional RNA modification to enrich genetic information, widely involved in regulating diverse biological processes in eukaryotes. RDDs in the wheat nuclear genome, especially those associated with drought response or tolerance, were not well studied up to now. In this study, we investigated the RDDs related to drought response based on the RNA-seq data of drought-stressed and control samples in wheat. In total, 21,782 unique RDDs were identified, of which 265 were found to be drought-induced, representing the first drought-responsive RDD landscape in the wheat nuclear genome. The drought-responsive RDDs were located in 69 genes, of which 35 were differentially expressed under drought stress. Furthermore, the effects of RNA/DNA differences were investigated, showing that they could result in changes of RNA secondary structure, miRNA-target binding as well as protein conserved domains in the RDD-containing genes. In particular, the A to C mutation in TraesCS2A02G053100 (orthology to OsRLCK) led to the loss of tae-miR9657b-5p targeting, indicating that RNA/DNA difference might mediate miRNA to regulate the drought-response process. This study reported the first drought-responsive RDDs in the wheat nuclear genome. It sheds light on the roles of RDD in drought tolerance, and may also contribute to wheat genetic improvement based on epi-transcriptome methods.


Asunto(s)
Sequías , MicroARNs , ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Estrés Fisiológico/genética , Transcriptoma , Triticum/metabolismo
8.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35887327

RESUMEN

RNA/DNA difference (RDD) is a post-transcriptional modification playing a crucial role in regulating diverse biological processes in eukaryotes. Although it has been extensively studied in plant chloroplast and mitochondria genomes, RDDs in plant nuclear genomes are not well studied at present. Here, we investigated the RDDs associated with fusarium head blight (FHB) through a novel method by comparing the RNA-seq data between Fusarium-infected and control samples of four wheat genotypes. A total of 187 high-confidence unique RDDs in 36 genes were identified, representing the first landscape of the FHB-responsive RDD in wheat. The majority (26) of these 36 RDD genes were correlated either positively or negatively with FHB levels. Effects of these RDDs on RNA and protein sequences have been identified, their editing frequency and the expression level of the corresponding genes provided, and the prediction of the effect on the minimum folding free energy of mRNA, miRNA binding, and colocation of RDDs with conserved domains presented. RDDs were predicted to induce modifications in the mRNA and protein structures of the corresponding genes. In two genes, TraesCS1B02G294300 and TraesCS3A02G263900, editing was predicted to enhance their affinity with tae-miR9661-5p and tae-miR9664-3p, respectively. To our knowledge, this study is the first report of the association between RDD and FHB in wheat; this will contribute to a better understanding of the molecular basis underlying FHB resistance, and potentially lead to novel strategies to improve wheat FHB resistance through epigenetic methods.


Asunto(s)
Fusarium , Triticum , ADN/metabolismo , Resistencia a la Enfermedad/genética , Fusarium/genética , Enfermedades de las Plantas/genética , ARN/metabolismo , ARN Mensajero/metabolismo , Triticum/genética , Triticum/metabolismo
9.
BMC Genomics ; 22(1): 504, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34218810

RESUMEN

BACKGROUND: Lignin is one of the main components of the cell wall and is directly associated with plant development and defence mechanisms in plants, especially in response to Fusarium graminearum (Fg) infection. Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT) is the main regulator determining the efficiency of lignin synthesis and composition. Although it has been characterized in many plants, to date, the importance of the CCoAOMT family in wheat is not well understood. RESULTS: Here, a total of 21 wheat CCoAOMT genes (TaCCoAOMT) were identified through an in silico genome search method and they were classified into four groups based on phylogenetic analysis, with the members of the same group sharing similar gene structures and conserved motif compositions. Furthermore, the expression patterns and co-expression network in which TaCCoAOMT is involved were comprehensively investigated using 48 RNA-seq samples from Fg infected and mock samples of 4 wheat genotypes. Combined with qRT-PCR validation of 11 Fg-responsive TaCCoAOMT genes, potential candidates involved in the FHB response and their regulation modules were preliminarily suggested. Additionally, we investigated the genetic diversity and main haplotypes of these CCoAOMT genes in bread wheat and its relative populations based on resequencing data. CONCLUSIONS: This study identified and characterized the CCoAOMT family in wheat, which not only provided potential targets for further functional analysis, but also contributed to uncovering the mechanism of lignin biosynthesis and its role in FHB tolerance in wheat and beyond.


Asunto(s)
Fusarium , Acilcoenzima A , Metiltransferasas/genética , Filogenia , Enfermedades de las Plantas , Triticum
10.
Curr Genomics ; 21(8): 621-644, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33414683

RESUMEN

BACKGROUND: The basic helix-loop-helix (bHLH) transcription factor is one of the most important gene families in plants, playing a key role in diverse metabolic, physiological, and developmental processes. Although it has been well characterized in many plants, the significance of the bHLH family in barley is not well understood at present. METHODS: Through a genome-wide search against the updated barley reference genome, the genomic organization, evolution and expression of the bHLH family in barley were systematically analyzed. RESULTS: We identified 141 bHLHs in the barley genome (HvbHLHs) and further classified them into 24 subfamilies based on phylogenetic analysis. It was found that HvbHLHs in the same subfamily shared a similar conserved motif composition and exon-intron structures. Chromosome distribution and gene duplication analysis revealed that segmental duplication mainly contributed to the expansion of HvbHLHs and the duplicated genes were subjected to strong purifying selection. Furthermore, expression analysis revealed that HvbHLHs were widely expressed in different tissues and also involved in response to diverse abiotic stresses. The co-expression network was further analyzed to underpin the regulatory function of HvbHLHs. Finally, 25 genes were selected for qRT-PCR validation, the expression profiles of HvbHLHs showed diverse patterns, demonstrating their potential roles in relation to stress tolerance regulation. CONCLUSION: This study reported the genome organization, evolutionary characteristics and expression profile of the bHLH family in barley, which not only provide the targets for further functional analysis, but also facilitate better understanding of the regulatory network bHLH genes involved in stress tolerance in barley.

12.
Front Plant Sci ; 15: 1412953, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841284

RESUMEN

Microsatellites, known as simple sequence repeats (SSRs), are short tandem repeats of 1 to 6 nucleotide motifs found in all genomes, particularly eukaryotes. They are widely used as co-dominant markers in genetic analyses and molecular breeding. Triticeae, a tribe of grasses, includes major cereal crops such as bread wheat, barley, and rye, as well as abundant forage and lawn grasses, playing a crucial role in global food production and agriculture. To enhance genetic work and expedite the improvement of Triticeae crops, we have developed TriticeaeSSRdb, an integrated and user-friendly database. It contains 3,891,705 SSRs from 21 species and offers browsing options based on genomic regions, chromosomes, motif types, and repeat motif sequences. Advanced search functions allow personalized searches based on chromosome location and length of SSR. Users can also explore the genes associated with SSRs, design customized primer pairs for PCR validation, and utilize practical tools for whole-genome browsing, sequence alignment, and in silico SSR prediction from local sequences. We continually update TriticeaeSSRdb with additional species and practical utilities. We anticipate that this database will greatly facilitate trait genetic analyses and enhance molecular breeding strategies for Triticeae crops. Researchers can freely access the database at http://triticeaessrdb.com/.

13.
Plants (Basel) ; 12(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37514361

RESUMEN

N6-methyladenosine modifications (m6A) is one of the most abundant and prevalent post-transcriptional RNA modifications in plants, playing the crucial role in plant growth and development and stress adaptation. However, the m6A regulatory machinery in Aegilops_tauschii, the D genome progenitor of common wheat, is not well understood at present. Here, we systematically identified the m6A-related genes in Aegilops with a genome-wide search approach. In total, 25 putative m6A genes composed of 5 writers, 13 readers and 7 erasers were obtained. A phylogenetic analysis clearly grouped them into three subfamilies with the same subfamily showing similar gene structures and conserved domains. These m6A genes were found to contain a large number of cis-acting elements associating with plant hormones, regulation of growth and development as well as stress response, suggesting their widespread regulation function. Furthermore, the expression profiling of them was investigated using RNA-seq data to obtain stress-responsive candidates, of which 5 were further validated with a qPCR analysis. Finally, the genetic variation of m6A-related genes was investigated between Aegilops and D subgenome of wheat based on re-sequencing data, and an obvious genetic bottleneck occurred on them during the wheat domestication process. The promising haplotype association with domestication and agronomic traits was also detected. This study provided some insights on the genomic organization and evolutionary features of m6A-related genes in Aegilops, which will facilitate the further functional study and also contribute to broaden the genetic basis for genetic improvement in wheat and other crops.

14.
Int J Biol Macromol ; 230: 123376, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709820

RESUMEN

The NAC transcription factor (TF) family is one of the largest plant-specific gene families, playing the vital roles in plant growth and development as well as stress response. Although it has been extensively characterized in many plants, the significance of NAC family in wild emmer wheat is not well understood up to now. Here, a total of 200 NAC transcription factors were identified in wild emmer (TdNACs) through a genome-search method, which were classified into 12 subfamilies based on phylogenetic relationship. And the members in the subfamily shared similar exon-intron structure and conversed domain organization. Collinearity analysis revealed that segmental duplication and polyploidization contributed mainly to the expansion of TdNACs. Furthermore, the genetic variations of TdNACs were investigated using the re-sequencing data and genetic bottleneck has occurred on NAC genes when wild emmer domesticated to cultivated emmer wheat. Finally, the expression patterns of these TdNACs were investigated using RNA-seq data of the salt-tolerant genotype under salt stress to obtain salt-responsive TdNACs, and 10 out of which were further validated using QPCR analysis. This study provided the targets for further functional study of TdNAC genes, and also contributed to mine novel genes for improving the salt tolerance in wheat and other crops.


Asunto(s)
Genes de Plantas , Triticum , Triticum/metabolismo , Filogenia , Genotipo , Estrés Salino/genética
15.
Front Genet ; 13: 1042772, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406120

RESUMEN

Gene family expansion plays a central role in adaptive divergence and, ultimately, speciation is influenced by phenotypic diversity in different environments. Barley (Hordeum vulgare) is the fourth most important cereal crop in the world and is used for brewing purposes, animal feed, and human food. Systematic characterization of expanded gene families is instrumental in the research of the evolutionary history of barley and understanding of the molecular function of their gene products. A total of 31,750 conserved orthologous groups (OGs) were identified using eight genomes/subgenomes, of which 1,113 and 6,739 were rapidly expanded and contracted OGs in barley, respectively. Five expanded OGs containing 20 barley dirigent genes (HvDIRs) were identified. HvDIRs from the same OG were phylogenetically clustered with similar gene structure and domain organization. In particular, 7 and 5 HvDIRs from OG0000960 and OG0001516, respectively, contributed greatly to the expansion of the DIR-c subfamily. Tandem duplication was the driving force for the expansion of the barley DIR gene family. Nucleotide diversity and haplotype network analysis revealed that the expanded HvDIRs experienced severe bottleneck events during barley domestication, and can thus be considered as potential domestication-related candidate genes. The expression profile and co-expression network analysis revealed the critical roles of the expanded HvDIRs in various biological processes, especially in stress responses. HvDIR18, HvDIR19, and HvDIR63 could serve as excellent candidates for further functional genomics studies to improve the production of barley products. Our study revealed that the HvDIR family was significantly expanded in barley and might be involved in different developmental processes and stress responses. Thus, besides providing a framework for future functional genomics and metabolomics studies, this study also identified HvDIRs as candidates for use in improving barley crop resistance to biotic and abiotic stresses.

16.
Gene ; 799: 145840, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34274467

RESUMEN

In this study, 82 U-box genes were identified in wild emmer wheat (TdPUBs) through a genome-search method. Phylogenetic analysis classified them into seven groups and the genes belonging to the same group shared the similar exon-intron structure, motif organization and cis-element compositions. Synteny analysis of the U-box genes between different species revealed that segmental duplication and polyploidization mainly contributed to the expansion of TdPUBs. Furthermore, the genetic variations of U-box were investigated in wild emmer, domesticated emmer and durum wheat. Results showed that significant genetic bottleneck has occurred during domestication process of tetraploid emmer wheat. Meanwhile, 12 TdPUBs were co-located with known domestication related QTLs. Finally, the tissue-specific and stress-responsive TdPUB genes were identified through RNA-seq analysis. Combined with qPCR validation of 19 salt-responsive TdPUBs, the candidates involving in salt response were obtained. It lays the foundation to better understand the regulatory roles of U-box family in emmer wheat and beyond.


Asunto(s)
Filogenia , Proteínas de Plantas/genética , Triticum/genética , Cromosomas de las Plantas , Productos Agrícolas/genética , Domesticación , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Variación Genética , Genética de Población , Genoma de Planta , Haplotipos , Familia de Multigenes , Sintenía , Tetraploidía
17.
Front Plant Sci ; 12: 684619, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335653

RESUMEN

Plant mitochondrial transcription termination factor (mTERF) family regulates organellar gene expression (OGE) and is functionally characterized in diverse species. However, limited data are available about its functions in the agriculturally important cereal barley (Hordeum vulgare L.). In this study, we identified 60 mTERFs in the barley genome (HvmTERFs) through a comprehensive search against the most updated barley reference genome, Morex V2. Then, phylogenetic analysis categorized these genes into nine subfamilies, with approximately half of the HvmTERFs belonging to subfamily IX. Members within the same subfamily generally possessed conserved motif composition and exon-intron structure. Both segmental and tandem duplication contributed to the expansion of HvmTERFs, and the duplicated gene pairs were subjected to strong purifying selection. Expression analysis suggested that many HvmTERFs may play important roles in barley development (e.g., seedlings, leaves, and developing inflorescences) and abiotic stresses (e.g., cold, salt, and metal ion), and HvmTERF21 and HvmTERF23 were significant induced by various abiotic stresses and/or phytohormone treatment. Finally, the nucleotide diversity was decreased by only 4.5% for HvmTERFs during the process of barley domestication. Collectively, this is the first report to characterize HvmTERFs, which will not only provide important insights into further evolutionary studies but also contribute to a better understanding of the potential functions of HvmTERFs and ultimately will be useful in future gene functional studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA