Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 513, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789947

RESUMEN

BACKGROUND: Aldehyde dehydrogenases (ALDHs) are a family of enzymes that catalyze the oxidation of aldehyde molecules into the corresponding carboxylic acid, regulate the balance of aldehydes and protect plants from the poisoning caused by excessive accumulation of aldehydes; however, this gene family has rarely been studied in cotton. RESULTS: In the present study, genome-wide identification was performed, and a total of 114 ALDH family members were found in three cotton species, Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii. The ALDH genes were divided into six subgroups by evolutionary analysis. ALDH genes in the same subgroup showed similar gene structures and conserved motifs, but some genes showed significant differences, which may result in functional differences. Chromosomal location analysis and selective pressure analysis revealed that the ALDH gene family had experienced many fragment duplication events. Cis-acting element analysis revealed that this gene family may be involved in the response to various biotic and abiotic stresses. The RT‒qPCR results showed that the expression levels of some members of this gene family were significantly increased under salt stress conditions. Gohir.A11G040800 and Gohir.D06G046200 were subjected to virus-induced gene silencing (VIGS) experiments, and the sensitivity of the silenced plants to salt stress was significantly greater than that of the negative control plants, suggesting that Gohir.A11G040800 and Gohir.D06G046200 may be involved in the response of cotton to salt stress. CONCLUSIONS: In total, 114 ALDH genes were identified in three Gossypium species by a series of bioinformatics analysis. Gene silencing of the ALDH genes of G. hirsutum revealed that ALDH plays an important role in the response of cotton to salt stress.


Asunto(s)
Aldehído Deshidrogenasa , Genoma de Planta , Gossypium , Familia de Multigenes , Filogenia , Gossypium/genética , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolución Molecular , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Silenciador del Gen
2.
Mol Biol Rep ; 50(11): 9273-9282, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37812351

RESUMEN

BACKGROUND: As the world's leading fiber crop and a major oil-producing crop, cotton fiber yield and fiber quality are affected by environmental stresses, especially heat, drought and salinity. The LAZ1 (Lazarus 1) family genes are responsive to abscisic acid, drought, and salt treatments. Currently, mining and functional analyses of LAZ1 family genes in cotton have not been reported. METHODS AND RESULTS: In this study, 20 GhLAZ1 genes, designated GhLAZ1-1 - GhLAZ1-20, were identified in the genome of Gossypium hirsutum through the construction of an HMM model, and their molecular properties, chromosomal localization, phylogeny, gene structure, evolutionary selection pressure, promoter cis elements and gene expression under salt stress were analyzed. With the exception of GhLAZ1-17 and GhLAZ1-20, the remaining 18 GhLAZ1 genes were unevenly localized on 13 chromosomes in G. hirsutum; evolutionary analysis showed that these genes could be divided into three subfamilies; and evolutionary selection pressure analysis demonstrated that the GhLAZ1 genes were all under purifying selection. Many elements related to light responses, hormone responses, and abiotic stresses were predicted on the GhLAZ1 family gene promoters, and real-time quantitative PCR results showed that GhLAZ1-2, GhLAZ1-8, and GhLAZ1-18 were upregulated significantly in salt-treated cotton leaves. CONCLUSIONS: Our results suggested that GhLAZ1 genes were involved in the salt tolerance mechanism in G. hirsutum and provided a reference for further exploring the function and molecular mechanism of LAZ1 genes.


Asunto(s)
Gossypium , Familia de Multigenes , Gossypium/genética , Estrés Fisiológico/genética , Regiones Promotoras Genéticas/genética , Ácido Abscísico , Regulación de la Expresión Génica de las Plantas/genética , Filogenia , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA