Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(8): e2105599, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34881497

RESUMEN

2D ferroelectrics with robust polar order in the atomic-scale thickness at room temperature are needed to miniaturize ferroelectric devices and tackle challenges imposed by traditional ferroelectrics. These materials usually have polar point group structure regarding as a prerequisite of ferroelectricity. Yet, to introduce polar structure into otherwise nonpolar 2D materials for producing ferroelectricity remains a challenge. Here, by combining first-principles calculations and experimental studies, it is reported that the native Ga vacancy-defects located in the asymmetrical sites in cubic defective semiconductor α-Ga2 Se3 can induce polar structure. Meanwhile, the induced polarization can be switched in a moderate energy barrier. The switched polarization is observed in 2D α-Ga2 Se3 nanoflakes of ≈4 nm with a high switching temperature up to 450 K. Such polarization switching could arise from the displacement of Ga vacancy between neighboring asymmetrical sites by applying an electric field. This work removes the point group limit for ferroelectricity, expanding the range of 2D ferroelectrics into the native defective semiconductors.

2.
ACS Appl Mater Interfaces ; 14(41): 47075-47088, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36206550

RESUMEN

Pressure sensors with desirable flexibility, robustness, and versatility are urgently needed for complicated smart wearable devices. However, developing an ideal multifunctional flexible sensor is still challenging. In this work, a composite aerogel film sensor with an internal three-dimensional (3D) microporous and hierarchical structure is successfully fabricated by the self-assembly of aramid nanofiber (ANF) and conductive MXene by vacuum-assisted filtration and ice crystal growth. The resultant MXene/ANF aerogel film with a mass ratio of 3/7 (30% MAAF) presents high robustness with an outstanding tensile strength of 14.1 MPa and a modulus of 455 MPa while retaining appealing flexibility and sensitive characteristics due to the 3D microstructure. Accompanied by superior electric conductivity, the MAAF sensor performs noticeably in human motion and microexpression detection with a fast response time of 100 ms and a high sensitivity of 37.4 kPa-1. In addition, MAAF exhibits considerable thermal shielding performance based on the excellent thermostability. Moreover, it possesses prominent electrothermal property with a wide heating temperature range (32.7-242 °C) in a fast thermal response time (5 s) due to the Joule effect. Additionally, a hydrophobic SiO2 coating is introduced on the surface of MAAF to further broaden the sensing application, and the obtained MAAF@SiO2 sensor shows distinguished sensing capability underwater, which can be accurately applied to swimming monitoring. Therefore, this work provides a highly flexible, lightweight, robust, and multifunctional aerogel film sensor, showing promising potential in smart wearable sensing and healthcare devices, intelligent robots, and underwater detection.

3.
Mater Horiz ; 8(5): 1472-1480, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34846455

RESUMEN

Atomically thin two-dimensional (2D) van der Waals materials have exhibited many exotic layer-dependent physical properties including electronic structure, magnetic order, etc. Here, we report a striking even-odd layer dependent oscillation in the ferroelectric polarization of 2H-stacked few-layer α-In2Se3 nanoflakes. As characterized by piezoresponse force microscopy (PFM), when the in-plane (IP) electric polarization of 2H-stacked α-In2Se3 films is electrically aligned, the out-of-plane (OOP) polarization of the odd-layer (OL) samples is obviously larger than that of the even-layer (EL) ones. Similarly, samples with electrically aligned OOP polarization also show even-odd layer dependent IP polarization. Such an even-odd oscillation, as confirmed by the density functional theory calculations, can be attributed to the strong intercorrelation of the IP and OOP electric polarization of the α-In2Se3 monolayers and the special 2H-stacking structure of a 180 degree IP rotation with respect to the adjacent layers. Moreover, a negative differential resistance, interestingly, is induced by the polarization flip with a small coercive field of ∼1.625 kV cm-1, and its peak-to-valley ratio can be tuned up to ∼7 by the gate. This work demonstrates that the delicate stacking geometry of multilayer α-In2Se3 can bring an interesting even-odd ferroelectric effect, enriching the layer-dependent physical properties of the 2D materials family.

4.
Biosens Bioelectron ; 142: 111577, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31430613

RESUMEN

A novel nonsemiconductor photoelectrochemical biosensor was first constructed using the unique plasmonic AuNi nanodendrite arrays. The AuNi nanodendrite arrays were rapidly prepared by a one-step electrodeposition method using the porous anodic aluminum templates. Owing to its hierarchical structure with abundant active sites, the synergistic catalytic of Au and Ni can be better exploited. These plasmonic AuNi nanodendrite arrays display exceptional photoelectrocatalytic activities for glucose oxidation and hydrogen peroxide reduction reaction under visible light illumination. Specifically, the detection sensitivity for glucose (3.7277 mA mM-1 cm-2) under illumination is about 3.3 folds improvement than in the dark (1.1287 mA mM-1 cm-2), together with high accuracy and low detection limit of 3 µM. The markedly enhanced performance of AuNi nanodendrite arrays can be attributed to its hierarchical structure with abundant active sites and plasmonic effect of Au with strong absorption band in visible region. Such a newly developed method via the facile and low-cost route is of great significance in designing the plasmon-aided photoelectrochemical biosensors.


Asunto(s)
Técnicas Biosensibles/métodos , Glucemia/análisis , Oro/química , Peróxido de Hidrógeno/análisis , Nanoestructuras/química , Níquel/química , Técnicas Electroquímicas/métodos , Galvanoplastia/métodos , Humanos , Límite de Detección , Masculino , Nanoestructuras/ultraestructura , Semiconductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA