Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Immunol ; 19(12): 1403-1414, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30397350

RESUMEN

Repair of tissue damaged during inflammatory processes is key to the return of local homeostasis and restoration of epithelial integrity. Here we describe CD161+ regulatory T (Treg) cells as a distinct, highly suppressive population of Treg cells that mediate wound healing. These Treg cells were enriched in intestinal lamina propria, particularly in Crohn's disease. CD161+ Treg cells had an all-trans retinoic acid (ATRA)-regulated gene signature, and CD161 expression on Treg cells was induced by ATRA, which directly regulated the CD161 gene. CD161 was co-stimulatory, and ligation with the T cell antigen receptor induced cytokines that accelerated the wound healing of intestinal epithelial cells. We identified a transcription-factor network, including BACH2, RORγt, FOSL2, AP-1 and RUNX1, that controlled expression of the wound-healing program, and found a CD161+ Treg cell signature in Crohn's disease mucosa associated with reduced inflammation. These findings identify CD161+ Treg cells as a population involved in controlling the balance between inflammation and epithelial barrier healing in the gut.


Asunto(s)
Mucosa Intestinal/inmunología , Subfamilia B de Receptores Similares a Lectina de Células NK/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Tretinoina/inmunología , Cicatrización de Heridas/inmunología , Enfermedad de Crohn/inmunología , Humanos
2.
EMBO J ; 42(7): e111450, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36861806

RESUMEN

Membrane ion channels of the calcium homeostasis modulator (CALHM) family promote cell-cell crosstalk at neuronal synapses via ATP release, where ATP acts as a neurotransmitter. CALHM6, the only CALHM highly expressed in immune cells, has been linked to the induction of natural killer (NK) cell anti-tumour activity. However, its mechanism of action and broader functions in the immune system remain unclear. Here, we generated Calhm6-/- mice and report that CALHM6 is important for the regulation of the early innate control of Listeria monocytogenes infection in vivo. We find that CALHM6 is upregulated in macrophages by pathogen-derived signals and that it relocates from the intracellular compartment to the macrophage-NK cell synapse, facilitating ATP release and controlling the kinetics of NK cell activation. Anti-inflammatory cytokines terminate CALHM6 expression. CALHM6 forms an ion channel when expressed in the plasma membrane of Xenopus oocytes, where channel opening is controlled by a conserved acidic residue, E119. In mammalian cells, CALHM6 is localised to intracellular compartments. Our results contribute to the understanding of neurotransmitter-like signal exchange between immune cells that fine-tunes the timing of innate immune responses.


Asunto(s)
Infecciones Bacterianas , Sinapsis Inmunológicas , Ratones , Animales , Canales Iónicos/metabolismo , Células Asesinas Naturales , Infecciones Bacterianas/metabolismo , Adenosina Trifosfato/metabolismo , Mamíferos
3.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34518217

RESUMEN

NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation is beneficial during infection and vaccination but, when uncontrolled, is detrimental and contributes to inflammation-driven pathologies. Hence, discovering endogenous mechanisms that regulate NLRP3 activation is important for disease interventions. Activation of NLRP3 is regulated at the transcriptional level and by posttranslational modifications. Here, we describe a posttranslational phospho-switch that licenses NLRP3 activation in macrophages. The ON switch is controlled by the protein phosphatase 2A (PP2A) downstream of a variety of NLRP3 activators in vitro and in lipopolysaccharide-induced peritonitis in vivo. The OFF switch is regulated by two closely related kinases, TANK-binding kinase 1 (TBK1) and I-kappa-B kinase epsilon (IKKε). Pharmacological inhibition of TBK1 and IKKε, as well as simultaneous deletion of TBK1 and IKKε, but not of either kinase alone, increases NLRP3 activation. In addition, TBK1/IKKε inhibitors counteract the effects of PP2A inhibition on inflammasome activity. We find that, mechanistically, TBK1 interacts with NLRP3 and controls the pathway activity at a site distinct from NLRP3-serine 3, previously reported to be under PP2A control. Mutagenesis of NLRP3 confirms serine 3 as an important phospho-switch site but, surprisingly, reveals that this is not the sole site regulated by either TBK1/IKKε or PP2A, because all retain the control over the NLRP3 pathway even when serine 3 is mutated. Altogether, a model emerges whereby TLR-activated TBK1 and IKKε act like a "parking brake" for NLRP3 activation at the time of priming, while PP2A helps remove this parking brake in the presence of NLRP3 activating signals, such as bacterial pore-forming toxins or endogenous danger signals.


Asunto(s)
Quinasa I-kappa B/genética , Inflamasomas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Animales , Línea Celular , Femenino , Humanos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/genética
4.
J Autoimmun ; 138: 103031, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37229811

RESUMEN

The aim of this study was to assess the L-type amino acid transporter-1 (LAT1) as a possible therapeutic target for rheumatoid arthritis (RA). Synovial LAT1 expression in RA was monitored by immunohistochemistry and transcriptomic datasets. The contribution of LAT1 to gene expression and immune synapse formation was assessed by RNA-sequencing and total internal reflection fluorescent (TIRF) microscopy, respectively. Mouse models of RA were used to assess the impact of therapeutic targeting of LAT1. LAT1 was strongly expressed by CD4+ T cells in the synovial membrane of people with active RA and the level of expression correlated with levels of ESR and CRP as well as DAS-28 scores. Deletion of LAT1 in murine CD4+ T cells inhibited the development of experimental arthritis and prevented the differentiation of CD4+ T cells expressing IFN-γ and TNF-α, without affecting regulatory T cells. LAT1 deficient CD4+ T cells demonstrated reduced transcription of genes associated with TCR/CD28 signalling, including Akt1, Akt2, Nfatc2, Nfkb1 and Nfkb2. Functional studies using TIRF microscopy revealed a significant impairment of immune synapse formation with reduced recruitment of CD3ζ and phospho-tyrosine signalling molecules in LAT1 deficient CD4+ T cells from the inflamed joints but not the draining lymph nodes of arthritic mice. Finally, it was shown that a small molecule LAT1 inhibitor, currently undergoing clinical trials in man, was highly effective in treating experimental arthritis in mice. It was concluded that LAT1 plays a critical role in activation of pathogenic T cell subsets under inflammatory conditions and represents a promising new therapeutic target for RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratones , Animales , Membrana Sinovial , Subgrupos de Linfocitos T , Linfocitos T Reguladores/metabolismo , Transducción de Señal , Artritis Experimental/genética , Linfocitos T CD4-Positivos
5.
Gut ; 69(3): 578-590, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31792136

RESUMEN

OBJECTIVE: The functional role of interleukin-22 (IL22) in chronic inflammation is controversial, and mechanistic insights into how it regulates target tissue are lacking. In this study, we evaluated the functional role of IL22 in chronic colitis and probed mechanisms of IL22-mediated regulation of colonic epithelial cells. DESIGN: To investigate the functional role of IL22 in chronic colitis and how it regulates colonic epithelial cells, we employed a three-dimentional mini-gut epithelial organoid system, in vivo disease models and transcriptomic datasets in human IBD. RESULTS: As well as inducing transcriptional modules implicated in antimicrobial responses, IL22 also coordinated an endoplasmic reticulum (ER) stress response transcriptional programme in colonic epithelial cells. In the colon of patients with active colonic Crohn's disease (CD), there was enrichment of IL22-responsive transcriptional modules and ER stress response modules. Strikingly, in an IL22-dependent model of chronic colitis, targeting IL22 alleviated colonic epithelial ER stress and attenuated colitis. Pharmacological modulation of the ER stress response similarly impacted the severity of colitis. In patients with colonic CD, antibody blockade of IL12p40, which simultaneously blocks IL12 and IL23, the key upstream regulator of IL22 production, alleviated the colonic epithelial ER stress response. CONCLUSIONS: Our data challenge perceptions of IL22 as a predominantly beneficial cytokine in IBD and provide novel insights into the molecular mechanisms of IL22-mediated pathogenicity in chronic colitis. Targeting IL22-regulated pathways and alleviating colonic epithelial ER stress may represent promising therapeutic strategies in patients with colitis. TRIAL REGISTRATION NUMBER: NCT02749630.


Asunto(s)
Colitis/genética , Enfermedad de Crohn/fisiopatología , Estrés del Retículo Endoplásmico/genética , Células Epiteliales/fisiología , Interleucinas/farmacología , Transcripción Genética , Animales , Antibacterianos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Supervivencia Celular/efectos de los fármacos , Enfermedad Crónica , Colitis/sangre , Colitis/tratamiento farmacológico , Colitis/patología , Colon/patología , Enfermedad de Crohn/patología , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fármacos Gastrointestinales/farmacología , Fármacos Gastrointestinales/uso terapéutico , Humanos , Interleucina-17/farmacología , Interleucina-23/antagonistas & inhibidores , Interleucinas/sangre , Interleucinas/genética , Mucosa Intestinal/patología , Ratones , Organoides , Gravedad del Paciente , Fenilbutiratos/farmacología , Proteínas Recombinantes/farmacología , Transcripción Genética/efectos de los fármacos , Tunicamicina/farmacología , Respuesta de Proteína Desplegada , Ustekinumab/farmacología , Ustekinumab/uso terapéutico , Interleucina-22
6.
J Immunol ; 195(4): 1368-71, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26163586

RESUMEN

Retinoic acid (RA) is a critical regulator of the intestinal adaptive immune response. However, the intrinsic impact of RA on B cell differentiation in the regulation of gut humoral immunity in vivo has never been directly shown. To address this issue, we have been able to generate a mouse model where B cells specifically express a dominant-negative receptor α for RA. In this study, we show that the silencing of RA signaling in B cells reduces the numbers of IgA(+) Ab-secreting cells both in vitro and in vivo, suggesting that RA has a direct effect on IgA plasma cell differentiation. Moreover, the lack of RA signaling in B cells abrogates Ag-specific IgA responses after oral immunization and affects the microbiota composition. In conclusion, these results suggest that RA signaling in B cells through the RA receptor α is important to generate an effective gut humoral response and to maintain a normal microbiota composition.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Inmunización , Transducción de Señal , Tretinoina/metabolismo , Animales , Linfocitos B/citología , Diferenciación Celular/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Expresión Génica , Inmunoglobulina A/biosíntesis , Inmunoglobulina A/inmunología , Ratones , Ratones Transgénicos , Microbiota/inmunología , Células Plasmáticas/citología , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo
7.
Gastroenterology ; 149(2): 456-67.e15, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25917784

RESUMEN

BACKGROUND & AIMS: Innate lymphoid cells (ILCs) are a heterogeneous group of mucosal inflammatory cells that participate in chronic intestinal inflammation. We investigated the role of interleukin 6 (IL6) in inducing activation of ILCs in mice and in human beings with chronic intestinal inflammation. METHODS: ILCs were isolated from colons of Tbx21(-/-) × Rag2(-/-) mice (TRUC), which develop colitis; patients with inflammatory bowel disease (IBD); and patients without colon inflammation (controls). ILCs were characterized by flow cytometry; cytokine production was measured by enzyme-linked immunosorbent assay and cytokine bead arrays. Mice were given intraperitoneal injections of depleting (CD4, CD90), neutralizing (IL6), or control antibodies. Isolated colon tissues were analyzed by histology, explant organ culture, and cell culture. Bacterial DNA was extracted from mouse fecal samples to assess the intestinal microbiota. RESULTS: IL17A- and IL22-producing, natural cytotoxicity receptor-negative, ILC3 were the major subset of ILCs detected in colons of TRUC mice. Combinations of IL23 and IL1α induced production of cytokines by these cells, which increased further after administration of IL6. Antibodies against IL6 reduced colitis in TRUC mice without significantly affecting the structure of their intestinal microbiota. Addition of IL6 increased production of IL17A, IL22, and interferon-γ by human intestinal CD3-negative, IL7-receptor-positive cells, in a dose-dependent manner. CONCLUSIONS: IL6 contributes to activation of colonic natural cytotoxicity receptor-negative, CD4-negative, ILC3s in mice with chronic intestinal inflammation (TRUC mice) by increasing IL23- and IL1α-induced production of IL17A and IL22. This pathway might be targeted to treat patients with IBD because IL6, which is highly produced in colonic tissue by some IBD patients, also increased the production of IL17A, IL22, and interferon-γ by cultured human colon CD3-negative, IL7-receptor-positive cells.


Asunto(s)
Antígenos CD4/metabolismo , Citocinas/metabolismo , Inmunidad Innata/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/inmunología , Interleucina-6/farmacología , Linfocitos/efectos de los fármacos , Animales , Complejo CD3/metabolismo , Técnicas de Cultivo de Célula , Colon/citología , Colon/inmunología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-23/metabolismo , Interleucina-6/administración & dosificación , Interleucinas/metabolismo , Linfocitos/inmunología , Ratones , Ratones Noqueados , Receptores Gatillantes de la Citotoxidad Natural/metabolismo , Interleucina-22
8.
J Pharmacol Exp Ther ; 355(2): 191-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26330538

RESUMEN

Ischemia reperfusion injury (IRI) is a primary concern in liver transplantation, especially when steatosis is present. Acetazolamide (AZ), a specific carbonic anhydrase (CA) inhibitor, has been suggested to protect against hypoxia. Here, we hypothesized that AZ administration could be efficient to protect fatty livers against cold IRI. Obese Zucker rat livers were preserved in Institut Georges Lopez-1 storage solution for 24 hours at 4°C and ex vivo perfused for 2 hours at 37°C. Alternatively, rats were also treated with intravenous injection of AZ (30 mg/kg) before liver recovery. Liver injury, hepatic function, and vascular resistance were determined. CA II protein levels and CA hydratase activity were assessed as well as other parameters involved in IRI (endothelial nitric oxide synthase, mitogen activated protein kinase family, hypoxic inducible factor 1 alpha, and erythropoietin). We demonstrated that AZ administration efficiently protects the steatotic liver against cold IRI. AZ protection was associated with better function, decreased vascular resistance, and activation of endothelial nitric oxide synthase. This was consistent with an effective mitogen activated protein kinase inactivation. Finally, no effect on the hypoxic inductible factor 1 alpha/erythropoietin pathway was observed. The present study demonstrated that AZ administration is a suitable pharmacological strategy for preserving fatty liver grafts against cold IRI.


Asunto(s)
Acetazolamida/uso terapéutico , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Hígado Graso/tratamiento farmacológico , Trasplante de Hígado , Daño por Reperfusión/prevención & control , Animales , Anhidrasa Carbónica II/metabolismo , Frío , Activación Enzimática , Eritropoyetina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hígado Graso/patología , Hígado Graso/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hígado/irrigación sanguínea , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Óxido Nítrico Sintasa de Tipo III/metabolismo , Preservación de Órganos , Fosforilación , Ratas Zucker , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Resistencia Vascular
9.
Transpl Int ; 27(5): 493-503, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24472096

RESUMEN

Ischemia-reperfusion (IR) injury is an important problem in liver surgery especially when steatosis is present. Ischemic preconditioning (PC) is the only surgical strategy that has been applied in patients with steatotic livers undergoing warm ischemia. Silent information regulator 1 (SIRT1) is a histone deacetylase that regulates various cellular processes. This study evaluates the SIRT1 implication in PC in fatty livers. Homozygous (Ob) Zucker rats were subjected to IR and IR + PC. An additional group treated with sirtinol or EX527 (SIRT1 inhibitors) before PC was also realized. Liver injury and oxidative stress were evaluated. SIRT1 protein levels and activity, as well as other parameters involved in PC protective mechanisms (adenosine monophosphate protein kinase, eNOS, HSP70, MAP kinases, apoptosis), were also measured. We demonstrated that the protective effect of PC was due in part to SIRT1 induction, as SIRT1 inhibition resulted in increased liver injury and abolished the beneficial mechanisms of PC. In this study, we report for the first time that SIRT1 is involved in the protective mechanisms induced by hepatic PC in steatotic livers.


Asunto(s)
Hígado Graso/complicaciones , Precondicionamiento Isquémico , Hígado/irrigación sanguínea , Daño por Reperfusión/prevención & control , Sirtuina 1/fisiología , Animales , Apoptosis , Proteínas HSP70 de Choque Térmico/fisiología , Hígado/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico Sintasa de Tipo III/fisiología , Estrés Oxidativo , Ratas , Ratas Zucker , Sirtuina 1/análisis
10.
Exp Mol Pathol ; 94(2): 352-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23305864

RESUMEN

BACKGROUND: The dramatic shortage of organs leads to consider the steatotic livers for transplantation although their poor tolerance against ischemia reperfusion injury (IRI). Ubiquitin proteasome system (UPS) inhibition during hypothermia prolongs myocardial graft preservation. The role of UPS in the liver IRI is not fully understood. Bortezomib (BRZ) treatment at non-toxic doses of rats fed alcohol chronically has shown protective effects by increasing liver antioxidant enzymes. We evaluated and compared both proteasome inhibitors BRZ and MG132 in addition to University of Wisconsin preservation solution (UW) at low and non-toxic dose for fatty liver graft protection against cold IRI. EXPERIMENTAL: Steatotic and non-steatotic livers have been stored in UW enriched with BRZ (100 nM) or MG132 (25 µM), for 24h at 4°C and then subjected to 2-h normothermic reperfusion (37 °C). Liver injury (AST/ALT), hepatic function (bile output; vascular resistance), mitochondrial damage (GLDH), oxidative stress (MDA), nitric oxide (NO) (e-NOS activity; nitrates/nitrites), proteasome chymotrypsin-like activity (ChT), and UPS (19S and 20S5 beta) protein levels have been measured. RESULTS: ChT was inhibited when BRZ and MG132 were added to UW. Both inhibitors prevented liver injury (AST/ALT), when compared to UW alone. BRZ increased bile production more efficiently than MG132. Only BRZ decreased vascular resistance in fatty livers, which correlated with an increase in NO generation (through e-NOS activation) and AMPK phosphorylation. GLDH and MDA were also prevented by BRZ. In addition, BRZ inhibited adiponectin, IL-1, and TNF alpha, only in steatotic livers. CONCLUSION: MG132 and BRZ, administrated at low and non toxic doses, are very efficient to protect fatty liver grafts against cold IRI. The benefits of BRZ are more effective than those of MG132. This evidenced for the first time the potential use of UPS inhibitors for the preservation of marginal liver grafts and for future applications in the prevention of IRI.


Asunto(s)
Ácidos Borónicos/farmacología , Isquemia Fría , Hígado Graso/metabolismo , Leupeptinas/farmacología , Trasplante de Hígado/métodos , Inhibidores de Proteasoma/farmacología , Pirazinas/farmacología , Daño por Reperfusión/prevención & control , Adiponectina/antagonistas & inhibidores , Animales , Bortezomib , Inhibidores de Cisteína Proteinasa/farmacología , Citoprotección/efectos de los fármacos , Interleucina-1/antagonistas & inhibidores , Mitocondrias Hepáticas/metabolismo , Preservación de Órganos , Soluciones Preservantes de Órganos/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Zucker , Daño por Reperfusión/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
11.
J Pineal Res ; 55(1): 65-78, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23551302

RESUMEN

Ischemia/reperfusion injury (IRI) associated with liver transplantation plays an important role in the induction of graft injury. Prolonged cold storage remains a risk factor for liver graft outcome, especially when steatosis is present. Steatotic livers exhibit exacerbated endoplasmic reticulum (ER) stress that occurs in response to cold IRI. In addition, a defective liver autophagy correlates well with liver damage. Here, we evaluated the combined effect of melatonin and trimetazidine as additives to IGL-1 solution in the modulation of ER stress and autophagy in steatotic liver grafts through activation of AMPK. Steatotic livers were preserved for 24 hr (4°C) in UW or IGL-1 solutions with or without MEL + TMZ and subjected to 2-hr reperfusion (37°C). We assessed hepatic injury (ALT and AST) and function (bile production). We evaluated ER stress (GRP78, PERK, and CHOP) and autophagy (beclin-1, ATG7, LC3B, and P62). Steatotic livers preserved in IGL-1 + MEL + TMZ showed lower injury and better function as compared to those preserved in IGL-1 alone. IGL-1 + MEL + TMZ induced a significant decrease in GRP78, pPERK, and CHOP activation after reperfusion. This was consistent with a major activation of autophagic parameters (beclin-1, ATG7, and LC3B) and AMPK phosphorylation. The inhibition of AMPK induced an increase in ER stress and a significant reduction in autophagy. These data confirm the close relationship between AMPK activation and ER stress and autophagy after cold IRI. The addition of melatonin and TMZ to IGL-1 solution improved steatotic liver graft preservation through AMPK activation, which reduces ER stress and increases autophagy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Hígado Graso/metabolismo , Melatonina/farmacología , Trimetazidina/farmacología , Animales , Autofagia/fisiología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hígado Graso/patología , Histocitoquímica , Trasplante de Hígado , Sustancias Protectoras/farmacología , Ratas , Ratas Zucker , Daño por Reperfusión/metabolismo
12.
Cell Rep Med ; 4(11): 101245, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37913775

RESUMEN

Adjuvanted protein vaccines offer high efficacy, yet most potent adjuvants remain proprietary. Several adjuvant compounds are being developed by the Vaccine Formulation Institute in Switzerland for global open access clinical use. In the context of the R21 malaria vaccine, in a mouse challenge model, we characterize the efficacy and mechanism of action of four Vaccine Formulation Institute adjuvants: two liposomal (LQ and LMQ) and two squalene emulsion-based adjuvants (SQ and SMQ), containing QS-21 saponin (Q) and optionally a synthetic TLR4 agonist (M). Two R21 vaccine formulations, R21/LMQ and R21/SQ, offer the highest protection (81%-100%), yet they trigger different innate sensing mechanisms in macrophages with LMQ, but not SQ, activating the NLRP3 inflammasome. The resulting in vivo adaptive responses have a different TH1/TH2 balance and engage divergent innate pathways while retaining high protective efficacy. We describe how modular changes in vaccine formulation allow for the dissection of the underlying immune pathways, enabling future mechanistically informed vaccine design.


Asunto(s)
Vacunas contra la Malaria , Malaria , Animales , Ratones , Liposomas , Células TH1 , Emulsiones , Adyuvantes Inmunológicos/farmacología , Malaria/prevención & control
13.
Front Immunol ; 13: 1001956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389710

RESUMEN

Many invasive micro-organisms produce 'quorum sensor' molecules which regulate colony expansion and may modulate host immune responses. We have examined the ability of Pseudomonas Quorum Sensor (PQS) to influence cytokine expression under conditions of inflammatory stress. The administration of PQS in vivo to mice with collagen-induced arthritis (CIA) increased the severity of disease. Blood and inflamed paws from treated mice had fewer regulatory T cells (Tregs) but normal numbers of Th17 cells. However, PQS (1µM) treatment of antigen-stimulated lymph node cells from collagen-immunised mice in vitro inhibited the differentiation of CD4+IFNγ+ cells, with less effect on CD4+IL-17+ cells and no change in CD4+FoxP3+Tregs. PQS also inhibited T cell activation by anti-CD3/anti-CD28 antibodies. PQS reduced murine macrophage polarisation and inhibited expression of IL1B and IL6 genes in murine macrophages and human THP-1 cells. In human monocyte-derived macrophages, IDO1 gene, protein and enzyme activity were all inhibited by exposure to PQS. TNF gene expression was inhibited in THP-1 cells but not murine macrophages, while LPS-induced TNF protein release was increased by high PQS concentrations. PQS is known to have iron scavenging activity and its suppression of cytokine release was abrogated by iron supplementation. Unexpectedly, PQS decreased the expression of indoleamine-2, 3-dioxygenase genes (IDO1 and IDO2), IDO1 protein expression and enzyme activity in mouse and human macrophages. This is consistent with evidence that IDO1 inhibition or deletion exacerbates arthritis, while kynurenine reduces its severity. It is suggested that the inhibition of IDO1 and cytokine expression may contribute to the quorum sensor and invasive actions of PQS.


Asunto(s)
Quinurenina , Pseudomonas , Humanos , Ratones , Animales , Quinurenina/metabolismo , Pseudomonas aeruginosa , Hierro/metabolismo , Citocinas/metabolismo
14.
Cell Mol Gastroenterol Hepatol ; 14(3): 625-641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35660024

RESUMEN

BACKGROUND & AIMS: Resistance to single cytokine blockade, namely anti-tumor necrosis factor (TNF) therapy, is a growing concern for patients with inflammatory bowel disease (IBD). The transcription factor T-bet is a critical regulator of intestinal homeostasis, is genetically linked to mucosal inflammation and controls the expression of multiples genes such as the pro-inflammatory cytokines interferon (IFN)-γ and TNF. Inhibiting T-bet may therefore offer a more attractive prospect for treating IBD but remains challenging to target therapeutically. In this study, we evaluate the effect of targeting the transactivation function of T-bet using inhibitors of P-TEFb (CDK9-cyclin T), a transcriptional elongation factor downstream of T-bet. METHODS: Using an adaptive immune-mediated colitis model, human colonic lymphocytes from patients with IBD and multiple large clinical datasets, we investigate the effect of cyclin-dependent kinase 9 (CDK9) inhibitors on cytokine production and gene expression in colonic CD4+ T cells and link these genetic modules to clinical response in patients with IBD. RESULTS: Systemic CDK9 inhibition led to histological improvement of immune-mediated colitis and was associated with targeted suppression of colonic CD4+ T cell-derived IFN-γ and IL-17A. In colonic lymphocytes from patients with IBD, CDK9 inhibition potently repressed genes responsible for pro-inflammatory signalling, and in particular genes regulated by T-bet. Remarkably, CDK9 inhibition targeted genes that were highly expressed in anti-TNF resistant IBD and that predicted non-response to anti-TNF therapy. CONCLUSION: Collectively, our findings reveal CDK9 as a potential target for anti-TNF-resistant IBD, which has the potential for rapid translation to the clinic.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Colitis/tratamiento farmacológico , Quinasa 9 Dependiente de la Ciclina , Citocinas/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Inhibidores del Factor de Necrosis Tumoral
15.
Nat Commun ; 13(1): 5820, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192482

RESUMEN

The function of interleukin-22 (IL-22) in intestinal barrier homeostasis remains controversial. Here, we map the transcriptional landscape regulated by IL-22 in human colonic epithelial organoids and evaluate the biological, functional and clinical significance of the IL-22 mediated pathways in ulcerative colitis (UC). We show that IL-22 regulated pro-inflammatory pathways are involved in microbial recognition, cancer and immune cell chemotaxis; most prominently those involving CXCR2+ neutrophils. IL-22-mediated transcriptional regulation of CXC-family neutrophil-active chemokine expression is highly conserved across species, is dependent on STAT3 signaling, and is functionally and pathologically important in the recruitment of CXCR2+ neutrophils into colonic tissue. In UC patients, the magnitude of enrichment of the IL-22 regulated transcripts in colonic biopsies correlates with colonic neutrophil infiltration and is enriched in non-responders to ustekinumab therapy. Our data provide further insights into the biology of IL-22 in human disease and highlight its function in the regulation of pathogenic immune pathways, including neutrophil chemotaxis. The transcriptional networks regulated by IL-22 are functionally and clinically important in UC, impacting patient trajectories and responsiveness to biological intervention.


Asunto(s)
Colitis Ulcerosa , Quimiocinas CXC/metabolismo , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Humanos , Interleucina-8/metabolismo , Interleucinas , Infiltración Neutrófila , Neutrófilos/metabolismo , Receptores de Interleucina-8B/metabolismo , Ustekinumab/farmacología , Ustekinumab/uso terapéutico , Interleucina-22
16.
Front Immunol ; 10: 676, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024537

RESUMEN

A complex network of interactions exists between the microbiome, the epithelium, and immune cells that reside along the walls of the gastrointestinal tract. The intestinal immune system has been assigned with the difficult task of discriminating between commensal, harmless bacteria, and invading pathogens that translocate across the epithelial monolayer. Importantly, it is trained to maintain tolerance against commensals, and initiate protective immune responses against pathogens to secure intestinal homeostasis. Breakdown of this fine balance between the host and its intestinal microbiota can lead to intestinal inflammation and subsequently to development of inflammatory bowel disease (IBD). A decade since their discovery, innate lymphoid cells (ILCs) are now recognized as important regulators of intestinal homeostasis. ILC3s have emerged as a critical subset in the gut. They are the most phenotypically diverse ILC population and interact directly with numerous different cell types (haematopoietic and non-haematopoeitic), as well as interface with the bacterial flora. In addition to their contribution to intestinal pathogen immunity, they also mitigate against tissue damage occurring following acute injury, by facilitating tissue repair and regeneration, a key function in the maintenance of intestinal homeostasis. However, in chronic inflammation the tables are turned and ILC3s may acquire a pro-inflammatory phenotype in the gut. Chronic ILC activation can lead to persistent inflammation contributing to IBD and/or colorectal cancer. In this review, we discuss current knowledge of group 3 ILCs and their contributions to intestinal homeostasis and disease leading to novel therapeutic targets and clinical approaches that may inform novel treatment strategies for immune-mediated disorders, including IBD.


Asunto(s)
Tracto Gastrointestinal/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunología , Linfocitos/inmunología , Microbiota/inmunología , Animales , Homeostasis , Humanos , Tolerancia Inmunológica , Inmunidad Innata
17.
Expert Opin Pharmacother ; 17(2): 169-79, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26745388

RESUMEN

INTRODUCTION: Ischemia-reperfusion injury (IRI) involves a complex sequence of events and limits the outcome of various surgical interventions. Clinical trials, based on the data of experimental models, aim to prove whether a pharmacological or technical approach could be suitable to provide a beneficial effect in humans. Due to the complexity of IRI, few pharmacological treatments have been investigated in clinical Phase III. AREAS COVERED: In this review we report clinical trials that test specific drugs in clinical trials of organ transplantation. These studies form part of Phase II trials and examine the administration of caspase inhibitors, P-selectin antagonist or an antioxidant component in order to attenuate cold IRI during transplantation. Moreover, we provide a brief description of drugs tested on trials of different clinical situations associated to IRI, such as the coronary artery bypass graft surgery and percutaneous coronary intervention. EXPERT OPINION: Future clinical trials could be centered on the application of techniques suitable for organs with increased vulnerability toward IRI. Furthermore, the standardization of reliable biomarkers and a careful estimation of the impact of high risk factors may be the key in order to achieve a more critical evaluation of the obtained results.


Asunto(s)
Trasplante de Órganos/efectos adversos , Daño por Reperfusión/tratamiento farmacológico , Antioxidantes/uso terapéutico , Inhibidores de Caspasas/uso terapéutico , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Isquemia Fría/efectos adversos , Puente de Arteria Coronaria/efectos adversos , Humanos , Trasplante de Riñón/efectos adversos , Trasplante de Hígado/efectos adversos , Selectina-P/antagonistas & inhibidores , Intervención Coronaria Percutánea/efectos adversos , Daño por Reperfusión/etiología
18.
Front Immunol ; 7: 643, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066447

RESUMEN

Retinoic acid (RA) plays an important role in the balance of inflammation and tolerance in T cells. Furthermore, it has been demonstrated that RA facilitates IgA isotype switching in B cells in vivo. However, it is unclear whether RA has a direct effect on T-independent B cell responses in vivo. To address this question, we generated a mouse model where RA signaling is specifically silenced in the B cell lineage. This was achieved through the overexpression of a dominant negative receptor α for RA (dnRARα) in the B cell lineage. In this model, we found a dramatic reduction in marginal zone (MZ) B cells and accumulation of transitional 2 B cells in the spleen. We also observed a reduction in B1 B cells in the peritoneum with a defect in the T-independent B cell response against 2,4,6-trinitrophenyl. This was not a result of inhibited development of B cells in the bone marrow, but likely the result of both defective expression of S1P1 in MZ B cells and a defect in the development of MZ and B1 B cells. This suggests that RARα expression in B cells is important for B cell frequency in the MZ and peritoneum, which is crucial for the generation of T-independent humoral responses.

19.
Oxid Med Cell Longev ; 2016: 9096549, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26981166

RESUMEN

Hepatic ischemia reperfusion injury (IRI) is an inevitable clinical problem for liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proven their effectiveness in various in vivo and in vitro models of tissue injury. The present study aims to investigate whether the intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) could be an effective strategy for rat liver preconditioning against IRI. PEG 35 was intravenously administered at 2 and 10 mg/kg to male Sprague Dawley rats. Then, rats were subjected to one hour of partial ischemia (70%) followed by two hours of reperfusion. The results demonstrated that PEG 35 injected intravenously at 10 mg/kg protected efficiently rat liver against the deleterious effects of IRI. This was evidenced by the significant decrease in transaminases levels and the better preservation of mitochondrial membrane polarization. Also, PEG 35 preserved hepatocyte morphology as reflected by an increased F-actin/G-actin ratio and confocal microscopy findings. In addition, PEG 35 protective mechanisms were correlated with the activation of the prosurvival kinase Akt and the cytoprotective factor AMPK and the inhibition of apoptosis. Thus, PEG may become a suitable agent to attempt pharmacological preconditioning against hepatic IRI.


Asunto(s)
Hepatocitos/metabolismo , Precondicionamiento Isquémico/métodos , Hepatopatías/prevención & control , Hígado/metabolismo , Polietilenglicoles/farmacología , Daño por Reperfusión/prevención & control , Animales , Hepatocitos/patología , Hígado/patología , Hepatopatías/metabolismo , Hepatopatías/patología , Masculino , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
20.
Biomed Res Int ; 2015: 794287, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26543868

RESUMEN

Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24 h, 4°C) and after reperfusion (2 h, 37°C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10 mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI.


Asunto(s)
Hígado Graso/tratamiento farmacológico , Mitocondrias Hepáticas/patología , Polietilenglicoles/administración & dosificación , Daño por Reperfusión/tratamiento farmacológico , Administración Intravenosa , Animales , Isquemia Fría , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Hígado Graso/fisiopatología , Humanos , Mitocondrias Hepáticas/ultraestructura , Peso Molecular , Ratas , Daño por Reperfusión/fisiopatología , Transaminasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA