Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 132(7): 867-881, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36884028

RESUMEN

BACKGROUND: Loss of brain-derived neurotrophic factor (BDNF)/TrkB (tropomyosin kinase receptor B) signaling accounts for brain and cardiac disorders. In neurons, ß-adrenergic receptor stimulation enhances local BDNF expression. It is unclear if this occurs in a pathophysiological relevant manner in the heart, especially in the ß-adrenergic receptor-desensitized postischemic myocardium. Nor is it fully understood whether and how TrkB agonists counter chronic postischemic left ventricle (LV) decompensation, a significant unmet clinical milestone. METHODS: We conducted in vitro studies using neonatal rat and adult murine cardiomyocytes, SH-SY5Y neuronal cells, and umbilical vein endothelial cells. We assessed myocardial ischemia (MI) impact in wild type, ß3AR knockout, or myocyte-selective BDNF knockout (myoBDNF KO) mice in vivo (via coronary ligation [MI]) or in isolated hearts with global ischemia-reperfusion (I/R). RESULTS: In wild type hearts, BDNF levels rose early after MI (<24 hours), plummeting at 4 weeks when LV dysfunction, adrenergic denervation, and impaired angiogenesis ensued. The TrkB agonist, LM22A-4, countered all these adverse effects. Compared with wild type, isolated myoBDNF KO hearts displayed worse infarct size/LV dysfunction after I/R injury and modest benefits from LM22A-4. In vitro, LM22A-4 promoted neurite outgrowth and neovascularization, boosting myocyte function, effects reproduced by 7,8-dihydroxyflavone, a chemically unrelated TrkB agonist. Superfusing myocytes with the ß3AR-agonist, BRL-37344, increased myocyte BDNF content, while ß3AR signaling underscored BDNF generation/protection in post-MI hearts. Accordingly, the ß1AR blocker, metoprolol, via upregulated ß3ARs, improved chronic post-MI LV dysfunction, enriching the myocardium with BDNF. Last, BRL-37344-imparted benefits were nearly abolished in isolated I/R injured myoBDNF KO hearts. CONCLUSIONS: BDNF loss underscores chronic postischemic heart failure. TrkB agonists can improve ischemic LV dysfunction via replenished myocardial BDNF content. Direct cardiac ß3AR stimulation, or ß-blockers (via upregulated ß3AR), is another BDNF-based means to fend off chronic postischemic heart failure.


Asunto(s)
Insuficiencia Cardíaca , Isquemia Miocárdica , Neuroblastoma , Disfunción Ventricular Izquierda , Ratas , Ratones , Humanos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Endoteliales/metabolismo , Neuroblastoma/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Receptores Adrenérgicos beta/metabolismo
2.
J Biol Chem ; 299(12): 105447, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949223

RESUMEN

The post-translational modification of intracellular proteins by O-linked ß-GlcNAc (O-GlcNAc) has emerged as a critical regulator of cardiac function. Enhanced O-GlcNAcylation activates cytoprotective pathways in cardiac models of ischemia-reperfusion (I/R) injury; however, the mechanisms underpinning O-GlcNAc cycling in response to I/R injury have not been comprehensively assessed. The cycling of O-GlcNAc is regulated by the collective efforts of two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and hydrolysis of O-GlcNAc, respectively. It has previously been shown that baseline heart physiology and pathophysiology are impacted by sex. Here, we hypothesized that sex differences in molecular signaling may target protein O-GlcNAcylation both basally and in ischemic hearts. To address this question, we subjected male and female WT murine hearts to ex vivo ischemia or I/R injury. We assessed hearts for protein O-GlcNAcylation, abundance of OGT, OGA, and glutamine:fructose-6-phosphate aminotransferase (GFAT2), activity of OGT and OGA, and UDP-GlcNAc levels. Our data demonstrate elevated O-GlcNAcylation in female hearts both basally and during ischemia. We show that OGT activity was enhanced in female hearts in all treatments, suggesting a mechanism for these observations. Furthermore, we found that ischemia led to reduced O-GlcNAcylation and OGT-specific activity. Our findings provide a foundation for understanding molecular mechanisms that regulate O-GlcNAcylation in the heart and highlight the importance of sex as a significant factor when assessing key regulatory events that control O-GlcNAc cycling. These data suggest the intriguing possibility that elevated O-GlcNAcylation in females contributes to reduced ischemic susceptibility.


Asunto(s)
Acetilglucosamina , Corazón , Miocardio , N-Acetilglucosaminiltransferasas , Caracteres Sexuales , Transducción de Señal , Animales , Femenino , Masculino , Ratones , Acetilglucosamina/metabolismo , Corazón/fisiología , Isquemia/enzimología , Isquemia/metabolismo , Miocardio/enzimología , Miocardio/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional
3.
Circ Res ; 130(5): 741-759, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35109669

RESUMEN

BACKGROUND: Abnormalities in cardiac energy metabolism occur in heart failure (HF) and contribute to contractile dysfunction, but their role, if any, in HF-related pathologic remodeling is much less established. CK (creatine kinase), the primary muscle energy reserve reaction which rapidly provides ATP at the myofibrils and regenerates mitochondrial ADP, is down-regulated in experimental and human HF. We tested the hypotheses that pathologic remodeling in human HF is related to impaired cardiac CK energy metabolism and that rescuing CK attenuates maladaptive hypertrophy in experimental HF. METHODS: First, in 27 HF patients and 14 healthy subjects, we measured cardiac energetics and left ventricular remodeling using noninvasive magnetic resonance 31P spectroscopy and magnetic resonance imaging, respectively. Second, we tested the impact of metabolic rescue with cardiac-specific overexpression of either Ckmyofib (myofibrillar CK) or Ckmito (mitochondrial CK) on HF-related maladaptive hypertrophy in mice. RESULTS: In people, pathologic left ventricular hypertrophy and dilatation correlate closely with reduced myocardial ATP levels and rates of ATP synthesis through CK. In mice, transverse aortic constriction-induced left ventricular hypertrophy and dilatation are attenuated by overexpression of CKmito, but not by overexpression of CKmyofib. CKmito overexpression also attenuates hypertrophy after chronic isoproterenol stimulation. CKmito lowers mitochondrial reactive oxygen species, tissue reactive oxygen species levels, and upregulates antioxidants and their promoters. When the CK capacity of CKmito-overexpressing mice is limited by creatine substrate depletion, the protection against pathologic remodeling is lost, suggesting the ADP regenerating capacity of the CKmito reaction rather than CK protein per se is critical in limiting adverse HF remodeling. CONCLUSIONS: In the failing human heart, pathologic hypertrophy and adverse remodeling are closely related to deficits in ATP levels and in the CK energy reserve reaction. CKmito, sitting at the intersection of cardiac energetics and redox balance, plays a crucial role in attenuating pathologic remodeling in HF. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00181259.


Asunto(s)
Forma Mitocondrial de la Creatina-Quinasa , Insuficiencia Cardíaca , Adenosina Difosfato , Adenosina Trifosfato/metabolismo , Animales , Creatina Quinasa/metabolismo , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Metabolismo Energético , Insuficiencia Cardíaca/metabolismo , Humanos , Hipertrofia Ventricular Izquierda/metabolismo , Ratones , Miocardio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Remodelación Ventricular
4.
J Med Syst ; 48(1): 57, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801649

RESUMEN

Wearable electronics are increasingly common and useful as health monitoring devices, many of which feature the ability to record a single-lead electrocardiogram (ECG). However, recording the ECG commonly requires the user to touch the device to complete the lead circuit, which prevents continuous data acquisition. An alternative approach to enable continuous monitoring without user initiation is to embed the leads in a garment. This study assessed ECG data obtained from the YouCare device (a novel sensorized garment) via comparison with a conventional Holter monitor. A cohort of thirty patients (age range: 20-82 years; 16 females and 14 males) were enrolled and monitored for twenty-four hours with both the YouCare device and a Holter monitor. ECG data from both devices were qualitatively assessed by a panel of three expert cardiologists and quantitatively analyzed using specialized software. Patients also responded to a survey about the comfort of the YouCare device as compared to the Holter monitor. The YouCare device was assessed to have 70% of its ECG signals as "Good", 12% as "Acceptable", and 18% as "Not Readable". The R-wave, independently recorded by the YouCare device and Holter monitor, were synchronized within measurement error during 99.4% of cardiac cycles. In addition, patients found the YouCare device more comfortable than the Holter monitor (comfortable 22 vs. 5 and uncomfortable 1 vs. 18, respectively). Therefore, the quality of ECG data collected from the garment-based device was comparable to a Holter monitor when the signal was sufficiently acquired, and the garment was also comfortable.


Asunto(s)
Electrocardiografía Ambulatoria , Electrocardiografía , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Adulto , Electrocardiografía Ambulatoria/instrumentación , Electrocardiografía Ambulatoria/métodos , Anciano de 80 o más Años , Electrocardiografía/instrumentación , Electrocardiografía/métodos , Dispositivos Electrónicos Vestibles , Adulto Joven , Vestuario , Procesamiento de Señales Asistido por Computador/instrumentación
5.
Circ Res ; 128(5): 639-651, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33401933

RESUMEN

RATIONALE: The mTORC1 (mechanistic target of rapamycin complex-1) controls metabolism and protein homeostasis and is activated following ischemia reperfusion (IR) injury and by ischemic preconditioning (IPC). However, studies vary as to whether this activation is beneficial or detrimental, and its influence on metabolism after IR is little reported. A limitation of prior investigations is their use of broad gain/loss of mTORC1 function, mostly applied before ischemic stress. This can be circumvented by regulating one serine (S1365) on TSC2 (tuberous sclerosis complex) to achieve bidirectional mTORC1 modulation but only with TCS2-regulated costimulation. OBJECTIVE: We tested the hypothesis that reduced TSC2 S1365 phosphorylation protects the myocardium against IR and is required for IPC by amplifying mTORC1 activity to favor glycolytic metabolism. METHODS AND RESULTS: Mice with either S1365A (TSC2SA; phospho-null) or S1365E (TSC2SE; phosphomimetic) knockin mutations were studied ex vivo and in vivo. In response to IR, hearts from TSC2SA mice had amplified mTORC1 activation and improved heart function compared with wild-type and TSC2SE hearts. The magnitude of protection matched IPC. IPC requited less S1365 phosphorylation, as TSC2SE hearts gained no benefit and failed to activate mTORC1 with IPC. IR metabolism was altered in TSC2SA, with increased mitochondrial oxygen consumption rate and glycolytic capacity (stressed/maximal extracellular acidification) after myocyte hypoxia-reperfusion. In whole heart, lactate increased and long-chain acylcarnitine levels declined during ischemia. The relative IR protection in TSC2SA was lost by lowering glucose in the perfusate by 36%. Adding fatty acid (palmitate) compensated for reduced glucose in wild type and TSC2SE but not TSC2SA which had the worst post-IR function under these conditions. CONCLUSIONS: TSC2-S1365 phosphorylation status regulates myocardial substrate utilization, and its decline activates mTORC1 biasing metabolism away from fatty acid oxidation to glycolysis to confer protection against IR. This pathway is also engaged and reduced TSC2 S1365 phosphorylation required for effective IPC. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Glucólisis , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Carnitina/análogos & derivados , Carnitina/metabolismo , Células Cultivadas , Glucosa/metabolismo , Precondicionamiento Isquémico , Ácido Láctico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Mutación , Daño por Reperfusión Miocárdica/terapia , Oxígeno/metabolismo , Fosforilación , Ratas , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
6.
Eur J Appl Physiol ; 123(1): 143-158, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36214902

RESUMEN

PURPOSE: Divers can experience cognitive impairment due to inert gas narcosis (IGN) at depth. Brain-derived neurotrophic factor (BDNF) rules neuronal connectivity/metabolism to maintain cognitive function and protect tissues against oxidative stress (OxS). Dopamine and glutamate enhance BDNF bioavailability. Thus, we hypothesized that lower circulating BDNF levels (via lessened dopamine and/or glutamate release) underpin IGN in divers, while testing if BDNF loss is associated with increased OxS. METHODS: To mimic IGN, we administered a deep narcosis test via a dry dive test (DDT) at 48 msw in a multiplace hyperbaric chamber to six well-trained divers. We collected: (1) saliva samples before DDT (T0), 25 msw (descending, T1), 48 msw (depth, T2), 25 msw (ascending, T3), 10 min after decompression (T4) to dopamine and/or reactive oxygen species (ROS) levels; (2) blood and urine samples at T0 and T4 for OxS too. We administered cognitive tests at T0, T2, and re-evaluated the divers at T4. RESULTS: At 48 msw, all subjects experienced IGN, as revealed by the cognitive test failure. Dopamine and total antioxidant capacity (TAC) reached a nadir at T2 when ROS emission was maximal. At decompression (T4), a marked drop of BDNF/glutamate content was evidenced, coinciding with a persisting decline in dopamine and cognitive capacity. CONCLUSIONS: Divers encounter IGN at - 48 msw, exhibiting a marked loss in circulating dopamine levels, likely accounting for BDNF-dependent impairment of mental capacity and heightened OxS. The decline in dopamine and BDNF appears to persist at decompression; thus, boosting dopamine/BDNF signaling via pharmacological or other intervention types might attenuate IGN in deep dives.


Asunto(s)
Disfunción Cognitiva , Buceo , Narcosis por Gas Inerte , Estupor , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/etiología , Descompresión/efectos adversos , Buceo/efectos adversos , Dopamina/metabolismo , Glutamatos , Narcosis por Gas Inerte/complicaciones , Especies Reactivas de Oxígeno , Estupor/etiología
7.
Sensors (Basel) ; 23(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37430719

RESUMEN

Worldwide, population aging and unhealthy lifestyles have increased the incidence of high-risk health conditions such as cardiovascular diseases, sleep apnea, and other conditions. Recently, to facilitate early identification and diagnosis, efforts have been made in the research and development of new wearable devices to make them smaller, more comfortable, more accurate, and increasingly compatible with artificial intelligence technologies. These efforts can pave the way to the longer and continuous health monitoring of different biosignals, including the real-time detection of diseases, thus providing more timely and accurate predictions of health events that can drastically improve the healthcare management of patients. Most recent reviews focus on a specific category of disease, the use of artificial intelligence in 12-lead electrocardiograms, or on wearable technology. However, we present recent advances in the use of electrocardiogram signals acquired with wearable devices or from publicly available databases and the analysis of such signals with artificial intelligence methods to detect and predict diseases. As expected, most of the available research focuses on heart diseases, sleep apnea, and other emerging areas, such as mental stress. From a methodological point of view, although traditional statistical methods and machine learning are still widely used, we observe an increasing use of more advanced deep learning methods, specifically architectures that can handle the complexity of biosignal data. These deep learning methods typically include convolutional and recurrent neural networks. Moreover, when proposing new artificial intelligence methods, we observe that the prevalent choice is to use publicly available databases rather than collecting new data.


Asunto(s)
Síndromes de la Apnea del Sueño , Dispositivos Electrónicos Vestibles , Humanos , Inteligencia Artificial , Electrocardiografía , Inteligencia
8.
Basic Res Cardiol ; 117(1): 37, 2022 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-35842861

RESUMEN

We have recently identified a pool of intracellular ß1 adrenergic receptors (ß1ARs) at the sarcoplasmic reticulum (SR) crucial for cardiac function. Here, we aim to characterize the integrative control of intracellular catecholamine for subcellular ß1AR signaling and cardiac function. Using anchored Förster resonance energy transfer (FRET) biosensors and transgenic mice, we determined the regulation of compartmentalized ß1AR-PKA signaling at the SR and plasma membrane (PM) microdomains by organic cation transporter 3 (OCT3) and monoamine oxidase A (MAO-A), two critical modulators of catecholamine uptake and homeostasis. Additionally, we examined local PKA substrate phosphorylation and excitation-contraction coupling in cardiomyocyte. Cardiac-specific deletion of MAO-A (MAO-A-CKO) elevates catecholamines and cAMP levels in the myocardium, baseline cardiac function, and adrenergic responses. Both MAO-A deletion and inhibitor (MAOi) selectively enhance the local ß1AR-PKA activity at the SR but not PM, and augment phosphorylation of phospholamban, Ca2+ cycling, and myocyte contractile response. Overexpression of MAO-A suppresses the SR-ß1AR-PKA activity and PKA phosphorylation. However, deletion or inhibition of OCT3 by corticosterone prevents the effects induced by MAOi and MAO-A deletion in cardiomyocytes. Deletion or inhibition of OCT3 also negates the effects of MAOi and MAO-A deficiency in cardiac function and adrenergic responses in vivo. Our data show that MAO-A and OCT3 act in concert to fine-tune the intracellular SR-ß1AR-PKA signaling and cardiac fight-or-flight response. We reveal a drug contraindication between anti-inflammatory corticosterone and anti-depressant MAOi in modulating adrenergic regulation in the heart, providing novel perspectives of these drugs with cardiac implications.


Asunto(s)
Corticosterona , Proteínas Quinasas Dependientes de AMP Cíclico , Adrenérgicos/metabolismo , Adrenérgicos/farmacología , Animales , Calcio/metabolismo , Catecolaminas/metabolismo , Catecolaminas/farmacología , Cationes/metabolismo , Cationes/farmacología , Corticosterona/metabolismo , Corticosterona/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Ratones , Monoaminooxidasa/metabolismo , Monoaminooxidasa/farmacología , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Fosforilación , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Retículo Sarcoplasmático
9.
Am J Physiol Heart Circ Physiol ; 320(4): H1321-H1336, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33481702

RESUMEN

Arsenic exposure though drinking water is widespread and well associated with adverse cardiovascular outcomes, yet the pathophysiological mechanisms by which iAS induces these effects are largely unknown. Recently, an epidemiological study in an American population with a low burden of cardiovascular risk factors found that iAS exposure was associated with altered left ventricular geometry. Considering the possibility that iAS directly induces cardiac remodeling independently of hypertension, we investigated the impact of an environmentally relevant iAS exposure on the structure and function of male and female hearts. Adult male and female C56BL/6J mice were exposed to 615 µg/L iAS for 8 wk. Males exhibited increased systolic blood pressure via tail cuff photoplethysmography, left ventricular wall thickening via transthoracic echocardiography, and increased plasma atrial natriuretic peptide via enzyme immunoassay. RT-qPCR revealed increased myocardial RNA transcripts of Acta1, Myh7, and Nppa and decreased Myh6, providing evidence of pathological hypertrophy in the male heart. Similar changes were not detected in females, and nitric oxide-dependent mechanisms of cardioprotection in the heart appeared to remain intact. Further investigation found that Rcan1 was upregulated in male hearts and that iAS activated NFAT in HEK-293 cells via luciferase assay. Interestingly, iAS induced similar hypertrophic gene expression changes in neonatal rat ventricular myocytes, which were blocked by calcineurin inhibition, suggesting that iAS may induce pathological cardiac hypertrophy in part by targeting the calcineurin-NFAT pathway. As such, these results highlight iAS exposure as an independent cardiovascular risk factor and provide biological impetus for its removal from human consumption.NEW & NOTEWORTHY This investigation provides the first mechanistic link between an environmentally relevant dose of inorganic arsenic (iAS) and pathological hypertrophy in the heart. By demonstrating that iAS exposure may cause pathological cardiac hypertrophy not only by increasing systolic blood pressure but also by potentially activating calcineurin-nuclear factor of activated T cells and inducing fetal gene expression, these results provide novel mechanistic insight into the theat of iAS exposure to the heart, which is necessary to identify targets for medical and public health intervention.


Asunto(s)
Arsenitos/toxicidad , Hipertrofia Ventricular Izquierda/inducido químicamente , Miocitos Cardíacos/efectos de los fármacos , Compuestos de Sodio/toxicidad , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Calcineurina/metabolismo , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Preparación de Corazón Aislado , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/metabolismo , Factores Sexuales , Transducción de Señal , Factores de Tiempo
10.
J Pharmacol Exp Ther ; 377(1): 39-50, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33414131

RESUMEN

Short-chain fatty acids (SCFAs) are metabolites produced almost exclusively by the gut microbiota and are an essential mechanism by which gut microbes influence host physiology. Given that SCFAs induce vasodilation, we hypothesized that they might have additional cardiovascular effects. In this study, novel mechanisms of SCFA action were uncovered by examining the acute effects of SCFAs on cardiovascular physiology in vivo and ex vivo. Acute delivery of SCFAs in conscious radiotelemetry-implanted mice results in a simultaneous decrease in both mean arterial pressure and heart rate (HR). Inhibition of sympathetic tone by the selective ß-1 adrenergic receptor antagonist atenolol blocks the acute drop in HR seen with acetate administration, yet the decrease in mean arterial pressure persists. Treatment with tyramine, an indirect sympathomimetic, also blocks the acetate-induced acute drop in HR. Langendorff preparations show that acetate lowers HR only after long-term exposure and at a smaller magnitude than seen in vivo. Pressure-volume loops after acetate injection show a decrease in load-independent measures of cardiac contractility. Isolated trabecular muscle preparations also show a reduction in force generation upon SCFA treatment, though only at supraphysiological concentrations. These experiments demonstrate a direct cardiac component of the SCFA cardiovascular response. These data show that acetate affects blood pressure and cardiac function through parallel mechanisms and establish a role for SCFAs in modulating sympathetic tone and cardiac contractility, further advancing our understanding of the role of SCFAs in blood pressure regulation. SIGNIFICANCE STATEMENT: Acetate, a short-chain fatty acid, acutely lowers heart rate (HR) as well as mean arterial pressure in vivo in radiotelemetry-implanted mice. Acetate is acting in a sympatholytic manner on HR and exerts negative inotropic effects in vivo. This work has implications for potential short-chain fatty acid therapeutics as well as gut dysbiosis-related disease states.


Asunto(s)
Acetatos/farmacología , Presión Sanguínea , Ácidos Grasos Volátiles/farmacología , Frecuencia Cardíaca , Corazón/efectos de los fármacos , Contracción Miocárdica , Acetatos/administración & dosificación , Animales , Ácidos Grasos Volátiles/administración & dosificación , Femenino , Corazón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiología
11.
Handb Exp Pharmacol ; 264: 311-337, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32813078

RESUMEN

Reactive oxygen species (ROS) dysregulation is a hallmark of cardiovascular disease, characterised by an imbalance in the synthesis and removal of ROS. ROS such as superoxide (•O2-), hydrogen peroxide (H2O2), hydroxyl (OH•) and peroxynitrite (ONOO-) have a marked impact on cardiovascular function, contributing to the vascular impairment and cardiac dysfunction associated with diseases such as angina, hypertension, diabetes and heart failure. Central to the vascular dysfunction is a reduction in bioavailability and/or physiological effects of vasoprotective nitric oxide (NO•), leading to vasoconstriction, inflammation and vascular remodelling. In a cardiac context, increased ROS generation can also lead to modification of key proteins involved in cardiac contractility. Whilst playing a key role in the pathogenesis of cardiovascular disease, ROS dysregulation also limits the clinical efficacy of current therapies, such as nitrosovasodilators. As such, alternate therapies are sought. This review will discuss the impact of ROS dysregulation on the therapeutic utility of NO• and its redox sibling, nitroxyl (HNO). Both nitric oxide (NO) and nitroxyl (HNO) donors signal through soluble guanylyl cyclase (sGC). NO binds to the Fe(II) form of sGC and nitroxyl possibly to both sGC heme and thiol groups. In the vasculature, nitroxyl can also signal through voltage-dependent (Kv) and ATP-sensitive (KATP) K+ channels as well as calcitonin gene-related peptide (CGRP). In the heart, HNO directly targets critical thiols to increase myocardial contractility, an effect not seen with NO. The qualitative effects via elevation of cGMP are similar, i.e. lusitropic in the heart and inhibitory on vasoconstriction, inflammation, aggregation and vascular remodelling. Of pathophysiological significance is the fact the efficacy of NO donors is impaired by ROS, e.g. through chemical scavenging of NO, to generate reactive nitrogen oxide species (RNOS), whilst nitroxyl is apparently not.


Asunto(s)
Óxido Nítrico , Hermanos , Humanos , Peróxido de Hidrógeno , Óxidos de Nitrógeno , Oxidación-Reducción , Especies Reactivas de Oxígeno
12.
J Mol Cell Cardiol ; 139: 176-189, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32004507

RESUMEN

The renal-outer-medullary­potassium (ROMK) channel, mutated in Bartter's syndrome, regulates ion exchange in kidney, but its extra-renal functions remain unknown. Additionally, ROMK was postulated to be the pore-forming subunit of the mitochondrial ATP-sensitive K+ channel (mitoKATP), a mediator of cardioprotection. Using global and cardiomyocyte-specific knockout mice (ROMK-GKO and ROMK-CKO respectively), we characterize the effects of ROMK knockout on mitochondrial ion handling, the response to pharmacological KATP channel modulators, and ischemia/reperfusion (I/R) injury. Mitochondria from ROMK-GKO hearts exhibited a lower threshold for Ca2+-triggered permeability transition pore (mPTP) opening but normal matrix volume changes during oxidative phosphorylation. Isolated perfused ROMK-GKO hearts exhibited impaired functional recovery and increased infarct size when I/R was preceded by an ischemic preconditioning (IPC) protocol. Because ROMK-GKO mice exhibited severe renal defects and cardiac remodeling, we further characterized ROMK-CKO hearts to avoid confounding systemic effects. Mitochondria from ROMK-CKO hearts had unchanged matrix volume responses during oxidative phosphorylation and still swelled upon addition of a mitoKATP opener, but exhibited a lower threshold for mPTP opening, similar to GKO mitochondria. Nevertheless, I/R induced damage was not exacerbated in ROMK-CKO hearts, either ex vivo or in vivo. Lastly, we examined the response of ROMK-CKO hearts to ex vivo I/R injury with or without IPC and found that IPC still protected these hearts, suggesting that cardiomyocyte ROMK does not participate significantly in the cardioprotective pathway elicited by IPC. Collectively, our findings from these novel strains of mice suggest that cardiomyocyte ROMK is not a central mediator of mitoKATP function, although it can affect mPTP activation threshold.


Asunto(s)
Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio/metabolismo , Animales , Animales Recién Nacidos , Sistemas CRISPR-Cas/genética , Calcio/metabolismo , Fenómenos Electrofisiológicos , Edición Génica , Técnicas de Inactivación de Genes , Hemodinámica , Precondicionamiento Isquémico Miocárdico , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Especificidad de Órganos , Perfusión , Fenotipo , Canales de Potasio de Rectificación Interna/metabolismo
13.
J Physiol ; 598(7): 1393-1415, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30462352

RESUMEN

KEY POINTS: Hearts from type 2 diabetic animals display perturbations in excitation-contraction coupling, impairing myocyte contractility and delaying relaxation, along with altered substrate consumption patterns. Under high glucose and ß-adrenergic stimulation conditions, palmitate can, at least in part, offset left ventricle (LV) dysfunction in hearts from diabetic mice, improving contractility and relaxation while restoring coronary perfusion pressure. Fluxome calculations of central catabolism in diabetic hearts show that, in the presence of palmitate, there is a metabolic remodelling involving tricarboxylic acid cycle, polyol and pentose phosphate pathways, leading to improved redox balance in cytoplasmic and mitochondrial compartments. Under high glucose and increased energy demand, the metabolic/fluxomic redirection leading to restored redox balance imparted by palmitate helps explain maintained LV function and may contribute to designing novel therapeutic approaches to prevent cardiac dysfunction in diabetic patients. ABSTRACT: Type-2 diabetes (T2DM) leads to reduced myocardial performance, and eventually heart failure. Excessive accumulation of lipids and glucose is central to T2DM cardiomyopathy. Previous data showed that palmitate (Palm) or glutathione preserved heart mitochondrial energy/redox balance under excess glucose, rescuing ß-adrenergic-stimulated cardiac excitation-contraction coupling. However, the mechanisms underlying the accompanying improved contractile performance have been largely ignored. Herein we explore in intact heart under substrate excess the metabolic remodelling associated with cardiac function in diabetic db/db mice subjected to stress given by ß-adrenergic stimulation with isoproterenol and high glucose compared to their non-diabetic controls (+/+, WT) under euglycaemic conditions. When perfused with Palm, T2DM hearts exhibited improved contractility/relaxation compared to WT, accompanied by extensive metabolic remodelling as demonstrated by metabolomics-fluxomics combined with bioinformatics and computational modelling. The T2DM heart metabolome showed significant differences in the abundance of metabolites in pathways related to glucose, lipids and redox metabolism. Using a validated computational model of heart's central catabolism, comprising glucose and fatty acid (FA) oxidation in cytoplasmic and mitochondrial compartments, we estimated that fluxes through glucose degradation pathways are ∼2-fold lower in heart from T2DM vs. WT under all conditions studied. Palm addition elicits improvement of the redox status via enhanced ß-oxidation and decreased glucose uptake, leading to flux-redirection away from redox-consuming pathways (e.g. polyol) while maintaining the flux through redox-generating pathways together with glucose-FA 'shared fuelling' of oxidative phosphorylation. Thus, available FAs such as Palm may help improve function via enhanced redox balance in T2DM hearts during peaks of hyperglycaemia and increased workload.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Corazón , Humanos , Ratones , Miocardio/metabolismo , Oxidación-Reducción
14.
J Am Chem Soc ; 142(9): 4309-4316, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32058717

RESUMEN

The recent discovery of hydropersulfides (RSSH) in mammalian systems suggests their potential roles in cell signaling. However, the exploration of RSSH biological significance is challenging due to their instability under physiological conditions. Herein, we report the preparation, RSSH-releasing properties, and cytoprotective nature of alkylamine-substituted perthiocarbamates. Triggered by a base-sensitive, self-immolative moiety, these precursors show efficient RSSH release and also demonstrate the ability to generate carbonyl sulfide (COS) in the presence of thiols. Using this dually reactive alkylamine-substituted perthiocarbamate platform, the generation of both RSSH and COS is tunable with respect to half-life, pH, and availability of thiols. Importantly, these precursors exhibit cytoprotective effects against hydrogen peroxide-mediated toxicity in H9c2 cells and cardioprotective effects against myocardial ischemic/reperfusion injury, indicating their potential application as new RSSH- and/or COS-releasing therapeutics.


Asunto(s)
Cardiotónicos/farmacología , Disulfuros/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Sulfuros/metabolismo , Óxidos de Azufre/metabolismo , Tiocarbamatos/farmacología , Animales , Cardiotónicos/síntesis química , Línea Celular , Disulfuros/síntesis química , Ratones , Ratas , Tiocarbamatos/síntesis química
15.
Circ Res ; 122(10): e75-e83, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29483093

RESUMEN

RATIONALE: Disrupted proteostasis is one major pathological trait that heart failure (HF) shares with other organ proteinopathies, such as Alzheimer and Parkinson diseases. Yet, differently from the latter, whether and how cardiac preamyloid oligomers (PAOs) develop in acquired forms of HF is unclear. OBJECTIVE: We previously reported a rise in monophosphorylated, aggregate-prone desmin in canine and human HF. We now tested whether monophosphorylated desmin acts as the seed nucleating PAOs formation and determined whether positron emission tomography is able to detect myocardial PAOs in nongenetic HF. METHODS AND RESULTS: Here, we first show that toxic cardiac PAOs accumulate in the myocardium of mice subjected to transverse aortic constriction and that PAOs comigrate with the cytoskeletal protein desmin in this well-established model of acquired HF. We confirm this evidence in cardiac extracts from human ischemic and nonischemic HF. We also demonstrate that Ser31 phosphorylated desmin aggregates extensively in cultured cardiomyocytes. Lastly, we were able to detect the in vivo accumulation of cardiac PAOs using positron emission tomography for the first time in acquired HF. CONCLUSIONS: Ser31 phosphorylated desmin is a likely candidate seed for the nucleation process leading to cardiac PAOs deposition. Desmin post-translational processing and misfolding constitute a new, attractive avenue for the diagnosis and treatment of the cardiac accumulation of toxic PAOs that can now be measured by positron emission tomography in acquired HF.


Asunto(s)
Amiloide/metabolismo , Desmina/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Procesamiento Proteico-Postraduccional , Amiloide/análisis , Amiloide/efectos de los fármacos , Animales , Catequina/análogos & derivados , Catequina/farmacología , Células Cultivadas , Desmina/genética , Femenino , Vectores Genéticos , Insuficiencia Cardíaca/etiología , Humanos , Masculino , Espectrometría de Masas/métodos , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Isquemia Miocárdica/complicaciones , Fosforilación , Polimorfismo de Nucleótido Simple , Tomografía de Emisión de Positrones/métodos , Presión , Agregado de Proteínas/efectos de los fármacos , Pliegue de Proteína , Ratas , Proteínas Recombinantes/metabolismo , alfa-Cristalinas/deficiencia , beta-Cristalinas/deficiencia
16.
J Pharmacol Exp Ther ; 371(3): 615-623, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31515443

RESUMEN

In the normal heart, frequently used anesthetics such as isoflurane and propofol can reduce inotropy. However, the impact of these agents on the failing myocardium is unclear. Here, we examined whether and how isoflurane and propofol influence cardiac contractility in intact cardiac muscles from rats treated with monocrotaline to induce heart failure. We measured force and intracellular Ca2+ ([Ca2 +]i) in trabeculae from the right ventricles of the rats in the absence or presence of propofol or isoflurane. At low to moderate concentrations, both propofol and isoflurane dose-dependently depressed cardiac force generation in failing trabeculae without altering [Ca2+]i At high doses, propofol (but not isoflurane) also decreased amplitude of [Ca2+]i transients. During steady-state activation, both propofol and isoflurane impaired maximal Ca2+-activated force (Fmax) while increasing the amount of [Ca2+]i required for 50% of maximal activation (Ca50). These events occurred without apparent change in the Hill coefficient, suggesting no impairment of cooperativity. Exposing these same muscles to the anesthetics after fiber skinning resulted in a similar decrement in Fmax and rise in Ca50 but no change in the myofibrillar ATPase-Ca2+ relationship. Thus, our study demonstrates that challenging the failing myocardium with commonly used anesthetic agents such as propofol and isoflurane leads to reduced force development as a result of lowered myofilament responsiveness to Ca2+ SIGNIFICANCE STATEMENT: Commonly used anesthetics such as isoflurane and propofol can impair myocardial contractility in subjects with heart failure by lowering myofilament responsiveness to Ca2+. High doses of propofol can also reduce the overall amplitude of the intracellular Ca2+ transient. These findings may have important implications for the safety and quality of intra- and perioperative care of patients with heart failure and other cardiac disorders.


Asunto(s)
Anestésicos/farmacología , Calcio/metabolismo , Insuficiencia Cardíaca/fisiopatología , Isoflurano/farmacología , Contracción Miocárdica/efectos de los fármacos , Propofol/farmacología , Animales , ATPasa de Ca(2+) y Mg(2+)/metabolismo , Femenino , Masculino , Miofibrillas/metabolismo , Ratas , Remodelación Ventricular/efectos de los fármacos
17.
Proc Natl Acad Sci U S A ; 112(6): 1880-5, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25583515

RESUMEN

BDNF and its associated tropomyosin-related kinase receptor B (TrkB) nurture vessels and nerves serving the heart. However, the direct effect of BDNF/TrkB signaling on the myocardium is poorly understood. Here we report that cardiac-specific TrkB knockout mice (TrkB(-/-)) display impaired cardiac contraction and relaxation, showing that BDNF/TrkB signaling acts constitutively to sustain in vivo myocardial performance. BDNF enhances normal cardiomyocyte Ca(2+) cycling, contractility, and relaxation via Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Conversely, failing myocytes, which have increased truncated TrkB lacking tyrosine kinase activity and chronically activated CaMKII, are insensitive to BDNF. Thus, BDNF/TrkB signaling represents a previously unidentified pathway by which the peripheral nervous system directly and tonically influences myocardial function in parallel with ß-adrenergic control. Deficits in this system are likely additional contributors to acute and chronic cardiac dysfunction.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Señalización del Calcio/fisiología , Diástole/fisiología , Contracción Miocárdica/fisiología , Receptor trkB/metabolismo , Análisis de Varianza , Animales , Calcio/metabolismo , Hemodinámica , Inmunohistoquímica , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp
18.
J Immunol ; 192(4): 1806-14, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24403532

RESUMEN

Sepsis is a major cause of mortality, and dysregulation of the immune response plays a central role in this syndrome. H2S, a recently discovered gaso-transmitter, is endogenously generated by many cell types, regulating a number of physiologic processes and pathophysiologic conditions. We report that H2S increased survival after experimental sepsis induced by cecal ligation and puncture (CLP) in mice. Exogenous H2S decreased the systemic inflammatory response, reduced apoptosis in the spleen, and accelerated bacterial eradication. We found that C/EBP homologous protein 10 (CHOP), a mediator of the endoplasmic reticulum stress response, was elevated in several organs after CLP, and its expression was inhibited by H2S treatment. Using CHOP-knockout (KO) mice, we demonstrated for the first time, to our knowledge, that genetic deletion of Chop increased survival after LPS injection or CLP. CHOP-KO mice displayed diminished splenic caspase-3 activation and apoptosis, decreased cytokine production, and augmented bacterial clearance. Furthermore, septic CHOP-KO mice treated with H2S showed no additive survival benefit compared with septic CHOP-KO mice. Finally, we showed that H2S inhibited CHOP expression in macrophages by a mechanism involving Nrf2 activation. In conclusion, our findings show a protective effect of H2S treatment afforded, at least partially, by inhibition of CHOP expression. The data reveal a major negative role for the transcription factor CHOP in overall survival during sepsis and suggest a new target for clinical intervention, as well potential strategies for treatment.


Asunto(s)
Bacterias/inmunología , Sulfuro de Hidrógeno/metabolismo , Sepsis/metabolismo , Factor de Transcripción CHOP/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Ciego/cirugía , Citocinas/biosíntesis , Estrés del Retículo Endoplásmico/efectos de los fármacos , Activación Enzimática , Lipopolisacáridos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Sepsis/tratamiento farmacológico , Bazo/efectos de los fármacos , Sobrevida , Factor de Transcripción CHOP/biosíntesis , Factor de Transcripción CHOP/genética
19.
Biophys J ; 108(1): 163-72, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25564863

RESUMEN

We describe a believed-novel procedure for translating metabolite profiles (metabolome) into the set of metabolic fluxes (fluxome) from which they originated. Methodologically, computational modeling is integrated with an analytical platform comprising linear optimization, continuation and dynamic analyses, and metabolic control. The procedure was tested with metabolite profiles obtained from ex vivo mice Langendorff-heart preparations perfused with glucose. The metabolic profiles were analyzed using a detailed kinetic model of the glucose catabolic pathways including glycolysis, pentose phosphate (PP), glycogenolysis, and polyols to translate the glucose metabolome of the heart into the fluxome. After optimization, the ability of the model to simulate the initial metabolite profile was confirmed, and metabolic fluxes as well as the structure of control and regulation of the glucose catabolic network could be calculated. We show that the step catalyzed by phosphofructokinase together with ATP demand and glycogenolysis exert the highest control on the glycolytic flux. The negative flux control exerted by phosphofructokinase on the PP and polyol pathways revealed that the extent of glycolytic flux directly affects flux redirection through these pathways, i.e., the higher the glycolytic flux the lower the PP and polyols. This believed-novel methodological approach represents a step forward that may help in designing therapeutic strategies targeted to diagnose, prevent, and treat metabolic diseases.


Asunto(s)
Simulación por Computador , Glucosa/metabolismo , Metaboloma/fisiología , Modelos Biológicos , Miocardio/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Glucogenólisis , Glucólisis , Cinética , Modelos Lineales , Ratones Endogámicos C57BL , Ratones Transgénicos , NAD/metabolismo , NADP/metabolismo , Vía de Pentosa Fosfato , Polímeros/metabolismo , Técnicas de Cultivo de Tejidos
20.
Am J Physiol Heart Circ Physiol ; 309(8): H1271-80, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26254336

RESUMEN

Levels of the HER2/ErbB2 protein in the heart are upregulated in some women during breast cancer therapy, and these women are at high risk for developing heart dysfunction after sequential treatment with anti-ErbB2/trastuzumab or doxorubicin. Doxorubicin is known to increase oxidative stress in the heart, and thus we considered the possibility that ErbB2 protein influences the status of cardiac antioxidant defenses in cardiomyocytes. In this study, we measured reactive oxygen species (ROS) in cardiac mitochondria and whole hearts from mice with cardiac-specific overexpression of ErbB2 (ErbB2(tg)) and found that, compared with control mice, high levels of ErbB2 in myocardium result in lower levels of ROS in mitochondria (P = 0.0075) and whole hearts (P = 0.0381). Neonatal cardiomyocytes isolated from ErbB2(tg) hearts have lower ROS levels and less cellular death (P < 0.0001) following doxorubicin treatment. Analyzing antioxidant enzyme levels and activities, we found that ErbB2(tg) hearts have increased levels of glutathione peroxidase 1 (GPx1) protein (P < 0.0001) and GPx activity (P = 0.0031) in addition to increased levels of two known GPx activators, c-Abl (P = 0.0284) and Arg (P < 0.0001). Interestingly, although mitochondrial ROS emission is reduced in the ErbB2(tg) hearts, oxygen consumption rates and complex I activity are similar to control littermates. Compared with these in vivo studies, H9c2 cells transfected with ErbB2 showed less cellular toxicity and produced less ROS (P < 0.0001) after doxorubicin treatment but upregulated GR activity (P = 0.0237) instead of GPx. Our study shows that ErbB2-dependent signaling contributes to antioxidant defenses and suggests a novel mechanism by which anticancer therapies involving ErbB2 antagonists can harm myocardial structure and function.


Asunto(s)
Antineoplásicos/toxicidad , Antioxidantes/metabolismo , Doxorrubicina/toxicidad , Glutatión Peroxidasa/metabolismo , Cardiopatías/prevención & control , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptor ErbB-2/metabolismo , Animales , Animales Recién Nacidos , Muerte Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Glutatión Reductasa/metabolismo , Cardiopatías/inducido químicamente , Cardiopatías/enzimología , Cardiopatías/genética , Cardiopatías/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Ratas , Receptor ErbB-2/genética , Glutatión Peroxidasa GPX1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA