Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682303

RESUMEN

This paper investigates the effect of altering the protein expression dynamics of the bHLH transcription factor Her6 at the single-cell level in the embryonic zebrafish telencephalon. Using a homozygote endogenous Her6:Venus reporter and 4D single-cell tracking, we show that Her6 oscillates in neural telencephalic progenitors and that the fusion of protein destabilisation (PEST) domain alters its expression dynamics, causing most cells to downregulate Her6 prematurely. However, counterintuitively, oscillatory cells increase, with some expressing Her6 at high levels, resulting in increased heterogeneity of Her6 expression in the population. These tissue-level changes appear to be an emergent property of coupling between single-cells, as revealed by experimentally disrupting Notch signalling and by computationally modelling alterations in Her6 protein stability. Despite the profound differences in the single-cell Her6 dynamics, the size of the telencephalon is only transiently altered and differentiation markers do not exhibit significant differences early on; however, a small increase is observed at later developmental stages. Our study suggests that cell coupling provides a compensation strategy, whereby an almost normal phenotype is maintained even though single-cell gene expression dynamics are abnormal, granting phenotypic robustness.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Fenotipo , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación del Desarrollo de la Expresión Génica , Telencéfalo/metabolismo , Telencéfalo/embriología , Análisis de la Célula Individual , Transducción de Señal , Receptores Notch/metabolismo , Receptores Notch/genética , Diferenciación Celular
2.
Development ; 149(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36189829

RESUMEN

MicroRNAs (miRs) have an important role in tuning dynamic gene expression. However, the mechanism by which they are quantitatively controlled is unknown. We show that the amount of mature miR-9, a key regulator of neuronal development, increases during zebrafish neurogenesis in a sharp stepwise manner. We characterize the spatiotemporal profile of seven distinct microRNA primary transcripts (pri-mir)-9s that produce the same mature miR-9 and show that they are sequentially expressed during hindbrain neurogenesis. Expression of late-onset pri-mir-9-1 is added on to, rather than replacing, the expression of early onset pri-mir-9-4 and -9-5 in single cells. CRISPR/Cas9 mutation of the late-onset pri-mir-9-1 prevents the developmental increase of mature miR-9, reduces late neuronal differentiation and fails to downregulate Her6 at late stages. Mathematical modelling shows that an adaptive network containing Her6 is insensitive to linear increases in miR-9 but responds to stepwise increases of miR-9. We suggest that a sharp stepwise increase of mature miR-9 is created by sequential and additive temporal activation of distinct loci. This may be a strategy to overcome adaptation and facilitate a transition of Her6 to a new dynamic regime or steady state.


Asunto(s)
MicroARNs , Pez Cebra , Animales , MicroARNs/genética , MicroARNs/metabolismo , Neurogénesis/genética , Pez Cebra/metabolismo
3.
EMBO J ; 39(12): e103558, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32395844

RESUMEN

Noise is prevalent in biology and has been widely quantified using snapshot measurements. This static view obscures our understanding of dynamic noise properties and how these affect gene expression and cell state transitions. Using a CRISPR/Cas9 Zebrafish her6::Venus reporter combined with mathematical and in vivo experimentation, we explore how noise affects the protein dynamics of Her6, a basic helix-loop-helix transcriptional repressor. During neurogenesis, Her6 expression transitions from fluctuating to oscillatory at single-cell level. We identify that absence of miR-9 input generates high-frequency noise in Her6 traces, inhibits the transition to oscillatory protein expression and prevents the downregulation of Her6. Together, these impair the upregulation of downstream targets and cells accumulate in a normally transitory state where progenitor and early differentiation markers are co-expressed. Computational modelling and double smFISH of her6 and the early neurogenesis marker, elavl3, suggest that the change in Her6 dynamics precedes the downregulation in Her6 levels. This sheds light onto the order of events at the moment of cell state transition and how this is influenced by the dynamic properties of noise. Our results suggest that Her/Hes oscillations, facilitated by dynamic noise optimization by miR-9, endow progenitor cells with the ability to make a cell state transition.


Asunto(s)
Animales Modificados Genéticamente/embriología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Relojes Biológicos , MicroARNs/metabolismo , Neurogénesis , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteína 3 Similar a ELAV/genética , Proteína 3 Similar a ELAV/metabolismo , MicroARNs/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34725165

RESUMEN

Here, we study the dynamical expression of endogenously labeled Hes1, a transcriptional repressor implicated in controlling cell proliferation, to understand how cell-cycle length heterogeneity is generated in estrogen receptor (ER)+ breast cancer cells. We find that Hes1 shows oscillatory expression with ∼25 h periodicity and during each cell cycle has a variable peak in G1, a trough around G1-S transition, and a less variable second peak in G2/M. Compared to other subpopulations, the cell cycle in CD44HighCD24Low cancer stem cells is longest and most variable. Most cells divide around the peak of the Hes1 expression wave, but preceding mitoses in slow dividing CD44HighCD24Low cells appear phase-shifted, resulting in a late-onset Hes1 peak in G1. The position, duration, and shape of this peak, rather than the Hes1 expression levels, are good predictors of cell-cycle length. Diminishing Hes1 oscillations by enforcing sustained expression slows down the cell cycle, impairs proliferation, abolishes the dynamic expression of p21, and increases the percentage of CD44HighCD24Low cells. Reciprocally, blocking the cell cycle causes an elongation of Hes1 periodicity, suggesting a bidirectional interaction of the Hes1 oscillator and the cell cycle. We propose that Hes1 oscillations are functionally important for the efficient progression of the cell cycle and that the position of mitosis in relation to the Hes1 wave underlies cell-cycle length heterogeneity in cancer cell subpopulations.


Asunto(s)
Neoplasias de la Mama/metabolismo , Ciclo Celular , Ritmo Circadiano , Receptores de Estrógenos/metabolismo , Factor de Transcripción HES-1/metabolismo , Humanos , Células MCF-7 , Células Madre Neoplásicas/fisiología
5.
Mol Syst Biol ; 17(5): e9902, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34031978

RESUMEN

Ultradian oscillations of HES Transcription Factors (TFs) at the single-cell level enable cell state transitions. However, the tissue-level organisation of HES5 dynamics in neurogenesis is unknown. Here, we analyse the expression of HES5 ex vivo in the developing mouse ventral spinal cord and identify microclusters of 4-6 cells with positively correlated HES5 level and ultradian dynamics. These microclusters are spatially periodic along the dorsoventral axis and temporally dynamic, alternating between high and low expression with a supra-ultradian persistence time. We show that Notch signalling is required for temporal dynamics but not the spatial periodicity of HES5. Few Neurogenin 2 cells are observed per cluster, irrespective of high or low state, suggesting that the microcluster organisation of HES5 enables the stable selection of differentiating cells. Computational modelling predicts that different cell coupling strengths underlie the HES5 spatial patterns and rate of differentiation, which is consistent with comparison between the motoneuron and interneuron progenitor domains. Our work shows a previously unrecognised spatiotemporal organisation of neurogenesis, emergent at the tissue level from the synthesis of single-cell dynamics.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Análisis de la Célula Individual/métodos , Médula Espinal/crecimiento & desarrollo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Comunicación Celular , Biología Computacional , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Ratones , Neurogénesis , Receptores Notch/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Análisis Espacio-Temporal , Médula Espinal/metabolismo , Ritmo Ultradiano
6.
BMC Bioinformatics ; 21(Suppl 10): 351, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32838730

RESUMEN

BACKGROUND: Oscillatory genes, with periodic expression at the mRNA and/or protein level, have been shown to play a pivotal role in many biological contexts. However, with the exception of the circadian clock and cell cycle, only a few such genes are known. Detecting oscillatory genes from snapshot single-cell experiments is a challenging task due to the lack of time information. Oscope is a recently proposed method to identify co-oscillatory gene pairs using single-cell RNA-seq data. Although promising, the current implementation of Oscope does not provide a principled statistical criterion for selecting oscillatory genes. RESULTS: We improve the optimisation scheme underlying Oscope and provide a well-calibrated non-parametric hypothesis test to select oscillatory genes at a given FDR threshold. We evaluate performance on synthetic data and three real datasets and show that our approach is more sensitive than the original Oscope formulation, discovering larger sets of known oscillators while avoiding the need for less interpretable thresholds. We also describe how our proposed pseudo-time estimation method is more accurate in recovering the true cell order for each gene cluster while requiring substantially less computation time than the extended nearest insertion approach. CONCLUSIONS: OscoNet is a robust and versatile approach to detect oscillatory gene networks from snapshot single-cell data addressing many of the limitations of the original Oscope method.


Asunto(s)
Redes Reguladoras de Genes , Programas Informáticos , Ciclo Celular , Relojes Circadianos/genética , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estadísticas no Paramétricas , Factores de Tiempo
7.
PLoS Comput Biol ; 13(5): e1005479, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28493880

RESUMEN

Multiple biological processes are driven by oscillatory gene expression at different time scales. Pulsatile dynamics are thought to be widespread, and single-cell live imaging of gene expression has lead to a surge of dynamic, possibly oscillatory, data for different gene networks. However, the regulation of gene expression at the level of an individual cell involves reactions between finite numbers of molecules, and this can result in inherent randomness in expression dynamics, which blurs the boundaries between aperiodic fluctuations and noisy oscillators. This underlies a new challenge to the experimentalist because neither intuition nor pre-existing methods work well for identifying oscillatory activity in noisy biological time series. Thus, there is an acute need for an objective statistical method for classifying whether an experimentally derived noisy time series is periodic. Here, we present a new data analysis method that combines mechanistic stochastic modelling with the powerful methods of non-parametric regression with Gaussian processes. Our method can distinguish oscillatory gene expression from random fluctuations of non-oscillatory expression in single-cell time series, despite peak-to-peak variability in period and amplitude of single-cell oscillations. We show that our method outperforms the Lomb-Scargle periodogram in successfully classifying cells as oscillatory or non-oscillatory in data simulated from a simple genetic oscillator model and in experimental data. Analysis of bioluminescent live-cell imaging shows a significantly greater number of oscillatory cells when luciferase is driven by a Hes1 promoter (10/19), which has previously been reported to oscillate, than the constitutive MoMuLV 5' LTR (MMLV) promoter (0/25). The method can be applied to data from any gene network to both quantify the proportion of oscillating cells within a population and to measure the period and quality of oscillations. It is publicly available as a MATLAB package.


Asunto(s)
Relojes Biológicos/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Mediciones Luminiscentes/métodos , Distribución Normal , Análisis de la Célula Individual/métodos , Animales , Línea Celular , Ratones , Procesos Estocásticos
8.
Development ; 141(7): 1514-25, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24598166

RESUMEN

The larval epidermis of Xenopus is a bilayered epithelium, which is an excellent model system for the study of the development and function of mucosal and mucociliary epithelia. Goblet cells develop in the outer layer while multiciliated cells and ionocytes sequentially intercalate from the inner to the outer layer. Here, we identify and characterise a fourth cell type, the small secretory cell (SSC). We show that the development of these cells is controlled by the transcription factor Foxa1 and that they intercalate into the outer layer of the epidermis relatively late, at the same time as embryonic hatching. Ultrastructural and molecular characterisation shows that these cells have an abundance of large apical secretory vesicles, which contain highly glycosylated material, positive for binding of the lectin, peanut agglutinin, and an antibody to the carbohydrate epitope, HNK-1. By specifically depleting SSCs, we show that these cells are crucial for protecting the embryo against bacterial infection. Mass spectrometry studies show that SSCs secrete a glycoprotein similar to Otogelin, which may form the structural component of a mucus-like protective layer, over the surface of the embryo, and several potential antimicrobial substances. Our study completes the characterisation of all the epidermal cell types in the early tadpole epidermis and reinforces the suitability of this system for the in vivo study of complex epithelia, including investigation of innate immune defences.


Asunto(s)
Epidermis/embriología , Epidermis/inmunología , Células Caliciformes/inmunología , Inmunidad Innata/fisiología , Xenopus/embriología , Xenopus/microbiología , Animales , Diferenciación Celular/fisiología , Cilios/inmunología , Embrión no Mamífero , Epidermis/metabolismo , Glicoproteínas/análisis , Glicoproteínas/metabolismo , Factor Nuclear 3-alfa del Hepatocito/fisiología , Iones/metabolismo , Larva , Moco/química , Moco/metabolismo , Vías Secretoras/inmunología , Vesículas Secretoras/inmunología , Vesículas Secretoras/metabolismo , Xenopus/inmunología
9.
Development ; 140(21): 4311-22, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24067354

RESUMEN

During mouse pre-implantation development, extra-embryonic primitive endoderm (PrE) and pluripotent epiblast precursors are specified in the inner cell mass (ICM) of the early blastocyst in a 'salt and pepper' manner, and are subsequently sorted into two distinct layers. Positional cues provided by the blastocyst cavity are thought to be instrumental for cell sorting; however, the sequence of events and the mechanisms that control this segregation remain unknown. Here, we show that atypical protein kinase C (aPKC), a protein associated with apicobasal polarity, is specifically enriched in PrE precursors in the ICM prior to cell sorting and prior to overt signs of cell polarisation. aPKC adopts a polarised localisation in PrE cells only after they reach the blastocyst cavity and form a mature epithelium, in a process that is dependent on FGF signalling. To assess the role of aPKC in PrE formation, we interfered with its activity using either chemical inhibition or RNAi knockdown. We show that inhibition of aPKC from the mid blastocyst stage not only prevents sorting of PrE precursors into a polarised monolayer but concomitantly affects the maturation of PrE precursors. Our results suggest that the processes of PrE and epiblast segregation, and cell fate progression are interdependent, and place aPKC as a central player in the segregation of epiblast and PrE progenitors in the mouse blastocyst.


Asunto(s)
Masa Celular Interna del Blastocisto/citología , Blastocisto/enzimología , Blastocisto/fisiología , Células Madre Embrionarias/metabolismo , Endodermo/fisiología , Proteína Quinasa C/metabolismo , Animales , Linaje de la Célula/fisiología , Polaridad Celular/fisiología , Cartilla de ADN/genética , Endodermo/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía Confocal , Proteína Quinasa C/genética , Interferencia de ARN
10.
Proc Natl Acad Sci U S A ; 110(27): 11029-34, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23776233

RESUMEN

Wound healing is essential for survival. We took advantage of the Xenopus embryo, which exhibits remarkable capacities to repair wounds quickly and efficiently, to investigate the mechanisms responsible for wound healing. Previous work has shown that injury triggers a rapid calcium response, followed by the activation of Ras homolog (Rho) family guanosine triphosphatases (GTPases), which regulate the formation and contraction of an F-actin purse string around the wound margin. How these processes are coordinated following wounding remained unclear. Here we show that inositol-trisphosphate 3-kinase B (Itpkb) via its enzymatic product inositol 1,3,4,5-tetrakisphosphate (InsP4) plays an essential role during wound healing by modulating the activity of Rho family GTPases and F-actin ring assembly. Furthermore, we show that Itpkb and InsP4 modulate the speed of the calcium wave, which propagates from the site of injury into neighboring uninjured cells. Strikingly, both overexpression of itpkb and exogenous application of InsP4 accelerate the speed of wound closure, a finding that has potential implications in our quest to find treatments that improve wound healing in patients with acute or chronic wounds.


Asunto(s)
Actinas/metabolismo , Calcio/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Cicatrización de Heridas/fisiología , Proteínas de Xenopus/fisiología , Proteínas de Unión al GTP rho/metabolismo , Animales , Animales Modificados Genéticamente , Señalización del Calcio/fisiología , Ectodermo/embriología , Ectodermo/fisiología , Epidermis/embriología , Epidermis/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Fosfatos de Inositol/fisiología , Oocitos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Xenopus laevis/fisiología
11.
J Lipid Res ; 55(9): 1970-80, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24852167

RESUMEN

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging has been used for the direct analysis of single intact Xenopus laevis embryo surfaces, locating multiple lipids during fertilization and the early embryo development stages with subcellular lateral resolution (∼4 µm). The method avoids the complicated sample preparation for lipid analysis of the embryos, which requires selective chemical extraction of a pool of samples and chromatographic separation, while preserving the spatial distribution of biological species. The results show ToF-SIMS is capable of profiling multiple components (e.g., glycerophosphocholine, SM, cholesterol, vitamin E, diacylglycerol, and triacylglycerol) in a single X. laevis embryo. We observe lipid remodeling during fertilization and early embryo development via time course sampling. The study also reveals the lipid distribution on the gamete fusion site. The methodology used in the study opens the possibility of studying developmental biology using high resolution imaging MS and of understanding the functional role of the biological molecules.


Asunto(s)
Metabolismo de los Lípidos , Xenopus laevis/metabolismo , Animales , Desarrollo Embrionario , Femenino , Imagenología Tridimensional , Masculino , Espectrometría de Masas , Xenopus laevis/embriología , Cigoto/metabolismo
12.
Development ; 138(24): 5451-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22110059

RESUMEN

As studies aim increasingly to understand key, evolutionarily conserved properties of biological systems, the ability to move transgenesis experiments efficiently between organisms becomes essential. DNA constructions used in transgenesis usually contain four elements, including sequences that facilitate transgene genome integration, a selectable marker and promoter elements driving a coding gene. Linking these four elements in a DNA construction, however, can be a rate-limiting step in the design and creation of transgenic organisms. In order to expedite the construction process and to facilitate cross-species collaborations, we have incorporated the four common elements of transgenesis into a modular, recombination-based cloning system called pTransgenesis. Within this framework, we created a library of useful coding sequences, such as various fluorescent protein, Gal4, Cre-recombinase and dominant-negative receptor constructs, which are designed to be coupled to modular, species-compatible selectable markers, promoters and transgenesis facilitation sequences. Using pTransgenesis in Xenopus, we demonstrate Gal4-UAS binary expression, Cre-loxP-mediated fate-mapping and the establishment of novel, tissue-specific transgenic lines. Importantly, we show that the pTransgenesis resource is also compatible with transgenesis in Drosophila, zebrafish and mammalian cell models. Thus, the pTransgenesis resource fosters a cross-model standardization of commonly used transgenesis elements, streamlines DNA construct creation and facilitates collaboration between researchers working on different model organisms.


Asunto(s)
Animales Modificados Genéticamente/genética , Biblioteca de Genes , Técnicas de Transferencia de Gen , Animales , Drosophila/genética , Integrasas/metabolismo , Factores de Transcripción/genética , Transgenes , Xenopus/genética , Pez Cebra/genética
13.
Nat Cell Biol ; 9(5): 531-40, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17435750

RESUMEN

FoxG1 is an evolutionarily conserved, winged-helix transcriptional repressor that maintains progenitor cells in the vertebrate forebrain. How the activity of FoxG1 is regulated is not known. Here, we report that in the developing Xenopus and mouse forebrain, FoxG1 is nuclear in progenitor cells but cytoplasmic in differentiating cells. The subcellular localisation of FoxG1 is regulated at the post-translational level by casein kinase I (CKI) and fibroblast growth factor (FGF) signalling. CKI phosphorylation of Ser 19 of FoxG1 promotes nuclear import, whereas FGF-induced phosphorylation of Thr 226 promotes nuclear export. Interestingly, FGF-induced phosphorylation of FoxG1 is mediated Akt kinase (also known as protein B kinase, PKB) kinase, rather than the MAPK pathway. Phosphorylation of endogenous FoxG1 is blocked by CKI and Akt inhibitors. In the mouse olfactory placode cell line OP27, and in cortical progenitors, increased FGF signalling causes FoxG1 to exit the nucleus and promotes neuronal differentiation, whereas FGF and Akt inhibitors block this effect. Thus, CKI and FGF signalling converge on an antagonistic regulation of FoxG1, which in turn controls neurogenesis in the forebrain.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Células Madre Embrionarias/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Factores de Transcripción Forkhead/genética , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Fosforilación , Prosencéfalo/citología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/embriología , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina , Transducción de Señal , Treonina , Transfección , Proteínas de Xenopus/genética , Xenopus laevis/embriología
14.
Sci Rep ; 14(1): 2123, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267500

RESUMEN

Quiescence, a reversible state of cell-cycle arrest, is an important state during both normal development and cancer progression. For example, in glioblastoma (GBM) quiescent glioblastoma stem cells (GSCs) play an important role in re-establishing the tumour, leading to relapse. While most studies have focused on identifying differentially expressed genes between proliferative and quiescent cells as potential drivers of this transition, recent studies have shown the importance of protein oscillations in controlling the exit from quiescence of neural stem cells. Here, we have undertaken a genome-wide bioinformatic inference approach to identify genes whose expression oscillates and which may be good candidates for controlling the transition to and from the quiescent cell state in GBM. Our analysis identified, among others, a list of important transcription regulators as potential oscillators, including the stemness gene SOX2, which we verified to oscillate in quiescent GSCs. These findings expand on the way we think about gene regulation and introduce new candidate genes as key regulators of quiescence.


Asunto(s)
Glioblastoma , Células-Madre Neurales , Humanos , Glioblastoma/genética , División Celular , Biología Computacional , Expresión Génica , Factores de Transcripción SOXB1/genética
15.
Development ; 137(23): 4005-15, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21062861

RESUMEN

During development, many organs, including the kidney, lung and mammary gland, need to branch in a regulated manner to be functional. Multicellular branching involves changes in cell shape, proliferation and migration. Axonal branching, however, is a unicellular process that is mediated by changes in cell shape alone and as such appears very different to multicellular branching. Sprouty (Spry) family members are well-characterised negative regulators of Receptor tyrosine kinase (RTK) signalling. Knockout of Spry1, 2 and 4 in mouse result in branching defects in different organs, indicating an important role of RTK signalling in controlling branching pattern. We report here that Spry3, a previously uncharacterised member of the Spry family plays a role in axonal branching. We found that spry3 is expressed specifically in the trigeminal nerve and in spinal motor and sensory neurons in a Brain-derived neurotrophin factor (BDNF)-dependent manner. Knockdown of Spry3 expression causes an excess of axonal branching in spinal cord motoneurons in vivo. Furthermore, Spry3 inhibits the ability of BDNF to induce filopodia in Xenopus spinal cord neurons. Biochemically, we show that Spry3 represses calcium release downstream of BDNF signalling. Altogether, we have found that Spry3 plays an important role in the regulation of axonal branching of motoneurons in vivo, raising the possibility of unexpected conservation in the involvement of intracellular regulators of RTK signalling in multicellular and unicellular branching.


Asunto(s)
Axones/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Morfogénesis , Transducción de Señal , Proteínas de Xenopus/metabolismo , Animales , Axones/enzimología , Secuencia de Bases , Señalización del Calcio , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Datos de Secuencia Molecular , Morfogénesis/genética , Filogenia , Seudópodos/metabolismo , Receptor trkB/metabolismo , Transducción de Señal/genética , Médula Espinal/citología , Médula Espinal/metabolismo , Factores de Tiempo , Xenopus/embriología , Xenopus/genética , Proteínas de Xenopus/genética
16.
Development ; 137(9): 1553-62, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20356955

RESUMEN

FoxG1 is a conserved transcriptional repressor that plays a key role in the specification, proliferation and differentiation of the telencephalon, and is expressed from the earliest stages of telencephalic development through to the adult. How the interaction with co-factors might influence the multiplicity and diversity of FoxG1 function is not known. Here, we show that interaction of FoxG1 with TLE2, a Xenopus tropicalis co-repressor of the Groucho/TLE family, is crucial for regulating the early activity of FoxG1. We show that TLE2 is co-expressed with FoxG1 in the ventral telencephalon from the early neural plate stage and functionally cooperates with FoxG1 in an ectopic neurogenesis assay. FoxG1 has two potential TLE binding sites: an N-terminal eh1 motif and a C-terminal YWPMSPF motif. Although direct binding seems to be mediated by the N-terminal motif, both motifs appear important for functional synergism. In the neurogenesis assay, mutation of either motif abolishes functional cooperation of TLE2 with FoxG1, whereas in the forebrain deletion of both motifs renders FoxG1 unable to induce the ventral telencephalic marker Nkx2.1. Knocking down either FoxG1 or TLE2 disrupts the development of the ventral telencephalon, supporting the idea that endogenous TLE2 and FoxG1 work together to specify the ventral telencephalon.


Asunto(s)
Telencéfalo/embriología , Telencéfalo/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Xenopus/metabolismo , Animales , Sitios de Unión , Western Blotting , Línea Celular , Embrión no Mamífero , Humanos , Inmunohistoquímica , Inmunoprecipitación , Etiquetado Corte-Fin in Situ , Unión Proteica , Proteínas de Xenopus/genética
17.
Development ; 136(16): 2767-77, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19633170

RESUMEN

During neurogenesis in Xenopus, apicobasally polarised superficial and non-polar deep cells take up different fates: deep cells become primary neurons while superficial cells stay as progenitors. It is not known whether the proteins that affect cell polarity also affect cell fate and how membrane polarity information may be transmitted to the nucleus. Here, we examine the role of the polarity components, apically enriched aPKC and basolateral Lgl2, in primary neurogenesis. We report that a membrane-tethered form of aPKC (aPKC-CAAX) suppresses primary neurogenesis and promotes cell proliferation. Unexpectedly, both endogenous aPKC and aPKC-CAAX show some nuclear localisation. A constitutively active aPKC fused to a nuclear localisation signal has the same phenotypic effect as aPKC-CAAX in that it suppresses neurogenesis and enhances proliferation. Conversely, inhibiting endogenous aPKC with a dominant-negative form that is restricted to the nucleus enhances primary neurogenesis. These observations suggest that aPKC has a function in the nucleus that is important for cell fate specification during primary neurogenesis. In a complementary experiment, overexpressing basolateral Lgl2 causes depolarisation and internalisation of superficial cells, which form ectopic neurons when supplemented with a proneural factor. These findings suggest that both aPKC and Lgl2 affect cell fate, but that aPKC is a nuclear determinant itself that might shuttle from the membrane to the nucleus to control cell proliferation and fate; loss of epithelial cell polarity by Lgl2 overexpression changes the position of the cells and is permissive for a change in cell fate.


Asunto(s)
Núcleo Celular/fisiología , Proliferación Celular , Neurogénesis/fisiología , Proteína Quinasa C/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , beta Carioferinas/metabolismo , Secuencias de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores/metabolismo , Polaridad Celular , Células HeLa , Humanos , Hibridación in Situ , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Proteína Quinasa C/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/genética , beta Carioferinas/genética
18.
J R Soc Interface ; 19(193): 20220339, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36000231

RESUMEN

Hes genes are transcriptional repressors activated by Notch. In the developing mouse neural tissue, HES5 expression oscillates in neural progenitors (Manning et al. 2019 Nat. Commun. 10, 1-19 (doi:10.1038/s41467-019-10734-8)) and is spatially organized in small clusters of cells with synchronized expression (microclusters). Furthermore, these microclusters are arranged with a spatial periodicity of three-four cells in the dorso-ventral axis and show regular switching between HES5 high/low expression on a longer time scale and larger amplitude than individual temporal oscillators (Biga et al. 2021 Mol. Syst. Biol. 17, e9902 (doi:10.15252/msb.20209902)). However, our initial computational modelling of coupled HES5 could not explain these features of the experimental data. In this study, we provide theoretical results that address these issues with biologically pertinent additions. Here, we report that extending Notch signalling to non-neighbouring progenitor cells is sufficient to generate spatial periodicity of the correct size. In addition, introducing a regular perturbation of Notch signalling by the emerging differentiating cells induces a temporal switching in the spatial pattern, which is longer than an individual cell's periodicity. Thus, with these two new mechanisms, a computational model delivers outputs that closely resemble the complex tissue-level HES5 dynamics. Finally, we predict that such dynamic patterning spreads out differentiation events in space, complementing our previous findings whereby the local synchronization controls the rate of differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas Represoras , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Comunicación Celular , Diferenciación Celular , Ratones , Receptores Notch/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología
19.
J R Soc Interface ; 18(182): 20210393, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34583566

RESUMEN

Gene expression dynamics, such as stochastic oscillations and aperiodic fluctuations, have been associated with cell fate changes in multiple contexts, including development and cancer. Single cell live imaging of protein expression with endogenous reporters is widely used to observe such gene expression dynamics. However, the experimental investigation of regulatory mechanisms underlying the observed dynamics is challenging, since these mechanisms include complex interactions of multiple processes, including transcription, translation and protein degradation. Here, we present a Bayesian method to infer kinetic parameters of oscillatory gene expression regulation using an auto-negative feedback motif with delay. Specifically, we use a delay-adapted nonlinear Kalman filter within a Metropolis-adjusted Langevin algorithm to identify posterior probability distributions. Our method can be applied to time-series data on gene expression from single cells and is able to infer multiple parameters simultaneously. We apply it to published data on murine neural progenitor cells and show that it outperforms alternative methods. We further analyse how parameter uncertainty depends on the duration and time resolution of an imaging experiment, to make experimental design recommendations. This work demonstrates the utility of parameter inference on time course data from single cells and enables new studies on cell fate changes and population heterogeneity.


Asunto(s)
Algoritmos , Regulación de la Expresión Génica , Animales , Teorema de Bayes , Cinética , Ratones , Probabilidad
20.
iScience ; 24(10): 103198, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34703994

RESUMEN

Quiescence is a dynamic process of reversible cell cycle arrest. High-level persistent expression of the HES1 transcriptional repressor, which oscillates with an ultradian periodicity in proliferative neural stem cells (NSCs), is thought to mediate quiescence. However, it is not known whether this is due to a change in levels or dynamics. Here, we induce quiescence in embryonic NSCs with BMP4, which does not increase HES1 level, and we find that HES1 continues to oscillate. To assess the role of HES1 dynamics, we express persistent HES1 under a moderate strength promoter, which overrides the endogenous oscillations while maintaining the total HES1 level within physiological range. We find that persistent HES1 does not affect proliferation or entry into quiescence; however, exit from quiescence is impeded. Thus, oscillatory expression of HES1 is specifically required for NSCs to exit quiescence, a finding of potential importance for controlling reactivation of stem cells in tissue regeneration and cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA