Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Asian-Australas J Anim Sci ; 33(6): 949-956, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32054235

RESUMEN

OBJECTIVE: This study was conducted to confirm the effects of new inoculants producing-antifungal or esterase substances on rye silage and its rumen fermentation indices by comparing wild with mutated types. METHODS: Rye harvested at dough stage was ensiled into 3 L mini bucket silo (1 kg) for 90 d in triplicate following: distilled water at 20 µL/g (CON); Lactobacillus brevis 100D8 (AT) and its inactivation of antifungal genes (AT-m) at 1.2×105 cfu/g, respectively; and Leuconostoc holzapfelii 5H4 (FD) and its inactivation of esterase genes (FD-est) at 1.0×105 cfu/g, respectively. After silo opened, silage was sub-sampled for the analysis of ensiling quality and its rumen fermentation indices. RESULTS: Among the wild type inoculants (CON vs AT vs FD), FD inoculant had higher (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber, the total degradable fraction, and total volatile fatty acid in rumen, while AT inoculant had higher (p<0.05) lactate, acetate, and lactic acid bacteria in silage. Silage pH and the potentially degradable fraction in rumen increased (p<0.05) by inactivation of antifungal activity (AT vs AT-m), but lactate, acetate, and lactic acid bacteria of silage decreased (p<0.05). In silage, acetate increased (p<0.05) by inactivation of esterase activity (FD vs FD-est) with decreases (p<0.05) of pH, ammonia-N, lactate, and yeast. Moreover, inactivation of esterase activity clearly decreased (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber, the total degradable fraction, and total volatile fatty acid in the rumen. CONCLUSION: This study concluded that FD inoculant confirmed esterase activity on rye silage harvested at dough stage, while AT inoculant could not be confirmed with antifungal activity due to the absence of mold in all silages.

2.
Asian-Australas J Anim Sci ; 32(7): 988-995, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30477293

RESUMEN

OBJECTIVE: This study was conducted to estimate the temperature and microbial changes of corn silages during aerobic exposure. METHODS: Kwangpyeongok (KW) and Pioneer 1543 (PI) corn hybrids were harvested at 29.7% of dry matter and chopped to 3 to 5 cm lengths. Homo (Lactobacillus plantarum; LP) or hetero (Lactobacillus buchneri; LB) fermentative inoculants at 1.2×105 colony forming unit/g of fresh forage was applied to the chopped corn forage which was then ensiled in quadruplicate with a 2×2 (hybrid×inoculant) treatment arrangement for 100 days. After the silo was opened, silage was sub-sampled for analysis of chemical compositions, in vitro digestibility, and fermentation indices. The fresh silage was continued to determine aerobic exposure qualities by recorded temperature and microbial changes. RESULTS: The KW silages had higher (p<0.01) in vitro digestibilities of dry matter and neutral detergent fiber than those of PI silages. Silages applied with LB had higher (p<0.001) acetate concentration, but lower (p<0.01) lactate concentration and lactate to acetate ratio than those of LP silages. The interaction effect among hybrid and inoculant was detected in acetate production (p = 0.008), aerobic stability (p = 0.006), and lactic acid bacteria count (p = 0.048). The yeast was lower (p = 0.018) in LB silages than that in LP silages. During the aerobic exposure, PI silages showed higher (p<0.05) temperature and mold than KW silages, while LP silages had higher (p<0.05) lactic acid bacteria and yeast than LB silages. CONCLUSION: The results indicated that the changes of silage temperature during aerobic exposure seems mainly affected by mold growth, while applied LB only enhanced aerobic stability of PI silages.

3.
Anim Biosci ; 36(5): 720-730, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36397704

RESUMEN

OBJECTIVE: This study investigated the effects of corn silage as a source of microbial inoculant containing antifungal and carboxylesterase-producing bacteria on fermentation, aerobic stability, and nutrient digestibility of fermented total mixed ration (FTMR) with different energy levels. METHODS: Corn silage was used as a bacterial source by ensiling for 72 d with an inoculant mixture of Lactobacillus brevis 5M2 and L. buchneri 6M1 at a 1:1 ratio. The corn silage without or with inoculant (CON vs MIX) was mixed with the other ingredients to formulate for low and high energy diets (LOW vs HIGH) for Hanwoo steers. All diets were ensiled into 20 L mini silo (5 kg) for 40 d in quadruplicate. RESULTS: The MIX diets had lower (p<0.05) acid detergent fiber with higher (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber compared to the CON diets. In terms of fermentation characteristics, the MIX diets had higher (p<0.05) acetate than the CON diets. The MIX diets had extended (p<0.05) lactic acid bacteria growth at 4 to 7 d of aerobic exposure and showed lower (p<0.05) yeast growth at 7 d of aerobic exposure than the CON diets. In terms of rumen fermentation, the MIX diets had higher (p<0.05) total fermentable fraction and total volatile fatty acid, with lower (p<0.05) pH than those of CON diets. The interaction (p = 0.036) between inoculant and diet level was only found in the immediately fermentable fraction, which inoculant was only effective on LOW diets. CONCLUSION: Application of corn silage with inoculant on FTMR presented an antifungal effect by inhibiting yeast at aerobic exposure and a carboxylesterase effect by improving nutrient digestibility. It also indicated that fermented feedstuffs could be used as microbial source for FTMR. Generally, the interaction between inoculant and diet level had less effect on this FTMR study.

4.
Front Microbiol ; 12: 637220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776970

RESUMEN

This study estimated the effect of essential fatty acid (FA) supplementation on fermentation indices, greenhouse gases, microbes, and FA profiles in the rumen. The treatments used pure FAs consisting of C18:2n-6 FA (LA), C18:3n-3 FA (LNA), or a mixture of these FAs at 1:1 ratio (Combo). In vitro rumen incubation was performed in 50 mL glass serum bottles containing 2 mg of pure FAs, 15 mL of rumen buffer (rumen fluid+anaerobe culture medium = 1:2), and 150 mg of synthetic diet (411 g cellulose, 411 g starch, and 178 g casein/kg dry matter) at 39°C for 8 h with five replications and three blanks. In rumen fermentation indices, LA exhibited highest (P < 0.05) ammonia-N and total gas volume after 8 h of incubation. Furthermore, LA presented lower (P < 0.05) pH with higher (P < 0.05) total volatile fatty acid (P = 0.034) than Combo, while LNA was not different compared with those in the other treatments. Additionally, Combo produced highest (P < 0.05) CO2 with lowest (P < 0.05) CH4. In the early hours of incubation, LA improved (P < 0.005) Fibrobacter succinogenes and Ruminococcus flavefaciens, while LNA improved (P < 0.005) Ruminococcus albus. After 8 h of incubation, LNA had lower (P < 0.05) methanogenic archaea than LA and Combo but had higher (P < 0.05) rumen ciliates than LA. R. albus was higher (P < 0.05) in LA than in LNA and Combo. It was observed that the rate of biohydrogenation of n-6 and n-3 FAs was comparatively lowest (P < 0.05) in Combo, characterized by higher C18:2n-6 and/or C18:3n-3 FA and polyunsaturated FA (PUFA) concentrations with lower (P < 0.05) concentrations of C18:0 and saturated FA and the ratio of saturated FAs to PUFAs. Therefore, this study concluded that dietary C18:2n-6 could improve populations of fibrolytic bacteria and rumen fermentation indices, but dietary mixture of pure C18:2n-6 and C18:3n-3 is recommended because it is effective in reducing enteric methane emissions and resisting biohydrogenation in the rumen with less effect on rumen microbes.

5.
Anim Biosci ; 34(6): 1029-1037, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33152212

RESUMEN

OBJECTIVE: This study was conducted to investigate effects of antifungal substance and carboxylesterase-producing inoculant on fermentation indices and rumen degradation kinetics of whole crop rice (WCR) silage ensiled at different dry matter (DM) contents. METHODS: Dual-purpose inoculants, Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1, confirmed both activities of antifungal and carboxylesterase in the previous study. The WCR at mature stage was chopped, and then wilted to obtain three different DM contents consisting of 35.4%, 43.6%, and 51.5%. All WCR forages were applied distilled water (CON) or mixed inoculants with 1:1 ratio at 1×105 colony forming unit/g (INO), and ensiled into 20 L mini silo (5 kg) in quadruplicates for 108 d. RESULTS: The INO silages had lower lactate (p<0.001) and butyrate (p = 0.022) with higher acetate (p<0.001) and propionate (p<0.001) than those of CON silages. Ammonia-N (p<0.001), lactate (tendency; p = 0.068), acetate (p = 0.030), and butyrate (p<0.001) concentrations of INO silages decreased linearly with increasing DM content of WCR forage. The INO silages presented higher lactic acid bacteria (p<0.001) with lower molds (p< 0.001) than those of CON silages. Yeasts (p = 0.042) and molds (p = 0.046) of WCR silages decreased linearly with increasing DM content of WCR forage. In the rumen, INO silages had higher the total degradable fraction (p<0.001), total volatile fatty acid (tendency; p = 0.097), and acetate (p = 0.007), but lower the fractional degradation rate (p = 0.011) and propionate (p<0.001) than those of CON silage. The total degradable fraction (p<0.001), total volatile fatty acid (p = 0.001), iso-butyrate (p = 0.036), and valerate (p = 0.008) decreased linearly with increasing DM content of WCR forage, while the lag phase (p<0.001) was increased linearly. CONCLUSION: This study concluded that application of dual-purpose inoculants on WCR silage confirmed antifungal and carboxylesterase activities by inhibiting mold and improving rumen digestibility, while increase of wilting times decreased organic acids production and rumen digestibility.

6.
Microorganisms ; 9(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800497

RESUMEN

The present study aimed to investigate effects of dual-purpose inoculants (antifungal and carboxylesterase activities) not only on corn silage quality, but also its shelf life against mold contamination at feed-out phase. Corn forage was ensiled for 252 d with different inoculants of the following: control (CON), Lactobacillus brevis 5M2 (5M), Lactobacillus buchneri 6M1 (6M), and mixture of 5M and 6M at 1:1 ratio (MIX). After ensiling, corn silage was contaminated with Fusarium graminearum. Silages applied inoculants had positive effects by increased organic acid and lactic acid bacteria, and decreased undesirable microbes. At feed-out phase, contamination of F. graminearum into corn silage had a negative effect on aerobic stability caused by increased growth of undesirable microbes. However, silages applied inoculants had positive effects by decreased undesirable microbes and extended lactic acid bacteria and aerobic stability. Generally, MIX silage presented better effects on organic acid production, rumen degradation, inhibition of undesirable microbes, and aerobic stability than 5M silage and 6M silage. The present study concluded that application of inoculants into corn silage had positive effects on fermentation characteristics and extended shelf life against mold contamination at feed-out phase. A mixed inoculant appeared to have better effects of antifungal and carboxylesterase than a single inoculant.

7.
J Anim Sci Technol ; 63(6): 1265-1274, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34957442

RESUMEN

Two field experiments were conducted to improve the conception rate of Hanwoo cow. The first experiment aimed to investigate the physiological condition of Hanwoo cows on estrus, including metabolic profiles and body condition score (BCS). The second experiment investigated the effect of a novel estrus detector on the artificial insemination (AI) conception rate for Hanwoo cows. For the first experiment, 80 Hanwoo cows (2.5 ± 0.10 of parity), approximately one month before estrus, were housed in 16 pens and offered the experimental diets twice daily with free water access. The BCS were recorded, and blood was collected from the jugular veins just before AI. The collected blood was used to measure physiological conditions, such as metabolite and hormone levels. For the second experiment, each cow was equipped with a neck-mounted estrus detector collar, which had a sensor connected through the internet. Approximately one month before estrus, three hundred sixty Hanwoo cows (2.4 ± 0.21 of parity) were assigned into groups with or without W-Tag collar treatments. The animals were managed the same as in the first experiment. The pregnancy rate reached 55% in the first experiment. The concentration of luteinizing hormone (LH) was higher (p < 0.012; 1.56 vs. 1.08 ng/mL) in cows that were not pregnant (NPG) than in cows that were pregnant (PG) after AI. The BCS and other concentrations of metabolites and hormones in the blood were not different in both NPG and PG cows. The ranges of estrogen, LH, and follicle-stimulating hormone for PG cows were 11.9 to 39.0 pg/mL, < 0.25 to 1.98 ng/mL, and < 0.50 to 0.82 ng/mL, respectively. In the second experiment, cows with the estrus detector had lower days open (p < 0.001; 78.1 vs. 84.8 d), insemination frequency (p < 0.001; 1.26 vs. 2.52), and return of estrus (p < 0.001; 70.9 vs. 79.1 d) than those in cows without the estrus detector. In conclusion, the present study indicated that lower LH concentration just before AI potentially increased the pregnancy rate of Hanwoo cows. Furthermore, the application of estrus detectors to Hanwoo cows could improve the conception success rate for AI.

8.
Animals (Basel) ; 11(5)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922499

RESUMEN

The present study investigated the effects of microbial additives producing antimicrobial and digestive-enzyme activities on the growth performance, blood metabolites, and fecal microflora of weaning pigs from 21 to 42 d of age. A total of 144 weaning pigs (1:1 ratio of gilt and boar; 21 d of age; 7.40 ± 0.53 kg of average body weight) were randomly distributed into four supplementary levels of microbial additive (0 vs. 0.5 vs. 1.0 vs. 1.5% of fresh weight) with three pens of replication, consisting of 12 weaning pigs per pen. All weaning pigs were maintained with the same basal diet for 21 d. Blood and feces were subsampled at day 21. Feed efficiency tended to increase linearly (p = 0.069) with an increasing supplementation level. Insulin, insulin-like growth factor 1, and blood glucose presented a quadratic effect (p < 0.05) with an increasing supplementation level, and these blood metabolites were highest at the 1% supplementation level. Immunoglobulin G in blood increased linearly by (p < 0.05) increasing the supplementation level. Salmonella and Escherichia coli in feces were decreased linearly by (p < 0.05) increasing the supplementation level. In conclusion, supplementation of microbial additive at 1.0% improved the feed efficiency, blood metabolites, and fecal microflora of weaning pigs.

9.
Microorganisms ; 8(10)2020 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-33081073

RESUMEN

This study investigated the effects of essential oil (EO) from three Korean wormwood (Artemisia Montana) plants on in vitro ruminal digestibility, fermentation, and microbial diversity. Dried (0.5 g) soybean meal (SBM) or bermudagrass hay (BGH) were incubated in buffered rumen fluid (40 mL) for 72 h with or without EO (5 mg/kg) from Ganghwa (GA), Injin (IN), or San (SA) wormwood (Experiment 1). Both SA and IN improved (p < 0.05) dry matter digestibility (DMD) of BGH, while GA reduced (p < 0.05) total short-chain fatty acid of BGH and SBM. Besides, SA increased (p < 0.05) numbers of Ruminococcus albus and Streptococcus bovis in SBM. Experiment 2 examined different doses (0, 0.1, 1, and 10 mg/kg) of SA, the most promising EO from Experiment 1. Applying SA at 10 mg/kg gave the highest DMD (L; p < 0.01) and neutral detergent fiber (Q; p < 0.05) digestibility for BGH. Applying SA at 1 mg/kg gave the highest R. albus population (Q; p < 0.05) in SBM. Therefore, SA was better than GA and IN at improving rumen fermentation, and the 0.1 to 1 and 10 mg/kg doses improved ruminal fermentation and in vitro digestibility of SBM and BGH, respectively.

10.
Microorganisms ; 8(5)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443787

RESUMEN

This study was conducted to screen dual-purpose lactic acid bacteria (LAB) from uncontrolled farm-scale silage, and then we confirmed their effects on corn silage. The LAB were isolated from eight farm-scale corn silages, and then we screened the antifungal activity against Fusarium graminearum and the carboxylesterase activity using spectrophotometer with p-nitrophenyl octanoate as substrate and McIlvane solution as buffer. From a total of 25 isolates, 5M2 and 6M1 isolates were selected as silage inoculants because presented both activities of antifungal and carboxylesterase. According 16S rRNA gene sequencing method, 5M2 isolate had 100.0% similarity with Lactobacillus brevis, and 6M1 isolate had 99.7% similarity with L. buchneri. Corn forage was ensiled in bale silo (500 kg) for 72 d without inoculant (CON) or with mixture of selected isolates at 1:1 ratio (INO). The INO silage had higher nutrient digestibility in the rumen than CON silage. Acetate was higher and yeasts were lower in INO silage than in CON silage on the day of silo opening. In all days of aerobic exposure, yeasts were lower in INO silage than CON silage. The present study concluded that Lactobacillus brevis 5M2 and L. buchneri 6M1 confirmed antifungal and carboxylesterase activities on farm-scale corn silage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA