Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 1282, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28455518

RESUMEN

Many bacteria swim through liquids or crawl on surfaces by rotating long appendages called flagella. Flagellar filaments are assembled from thousands of subunits that are exported through a narrow secretion channel and polymerize beneath a capping scaffold at the tip of the growing filament. The assembly of a flagellum uses a significant proportion of the biosynthetic capacities of the cell with each filament constituting ~1% of the total cell protein. Here, we addressed a significant question whether a flagellar filament can form a new cap and resume growth after breakage. Re-growth of broken filaments was visualized using sequential 3-color fluorescent labeling of filaments after mechanical shearing. Differential electron microscopy revealed the formation of new cap structures on broken filaments that re-grew. Flagellar filaments are therefore able to re-grow if broken by mechanical shearing forces, which are expected to occur frequently in nature. In contrast, no re-growth was observed on filaments that had been broken using ultrashort laser pulses, a technique allowing for very local damage to individual filaments. We thus conclude that assembly of a new cap at the tip of a broken filament depends on how the filament was broken.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Flagelos/ultraestructura , Flagelina/genética , Flagelina/metabolismo , Microscopía Electrónica , Salmonella typhimurium/metabolismo , Salmonella typhimurium/ultraestructura
2.
Elife ; 62017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262091

RESUMEN

The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell.


Asunto(s)
Flagelos/metabolismo , Flagelina/metabolismo , Biogénesis de Organelos , Salmonella enterica/metabolismo , Modelos Teóricos , Fuerza Protón-Motriz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA