Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526699

RESUMEN

Alu retroelements propagate via retrotransposition by hijacking long interspersed nuclear element-1 (L1) reverse transcriptase (RT) and endonuclease activities. Reverse transcription of Alu RNA into complementary DNA (cDNA) is presumed to occur exclusively in the nucleus at the genomic integration site. Whether Alu cDNA is synthesized independently of genomic integration is unknown. Alu RNA promotes retinal pigmented epithelium (RPE) death in geographic atrophy, an untreatable type of age-related macular degeneration. We report that Alu RNA-induced RPE degeneration is mediated via cytoplasmic L1-reverse-transcribed Alu cDNA independently of retrotransposition. Alu RNA did not induce cDNA production or RPE degeneration in L1-inhibited animals or human cells. Alu reverse transcription can be initiated in the cytoplasm via self-priming of Alu RNA. In four health insurance databases, use of nucleoside RT inhibitors was associated with reduced risk of developing atrophic macular degeneration (pooled adjusted hazard ratio, 0.616; 95% confidence interval, 0.493-0.770), thus identifying inhibitors of this Alu replication cycle shunt as potential therapies for a major cause of blindness.


Asunto(s)
Elementos Alu/genética , Elementos de Nucleótido Esparcido Largo/genética , Degeneración Macular/genética , Pigmentos Retinianos/metabolismo , Animales , Citoplasma/genética , ADN Complementario/genética , Epitelio/metabolismo , Epitelio/patología , Humanos , Degeneración Macular/patología , Pigmentos Retinianos/biosíntesis , Retroelementos/genética , Transcripción Reversa/genética
2.
Mol Pharm ; 20(1): 341-356, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36445335

RESUMEN

Cell-impermeable and negatively charged compounds' cellular uptake across the cell membranes remains challenging. Herein, the synthesis of four linear [(WWRR)2, (WWRR)3, (WWRR)4, and (WWRR)5] and four cyclic ([WWRR]2, [WWRR]3, [WWRR]4, and [WWRR]5) peptides containing alternate two tryptophan (WW) and two arginine (RR) residues and their biological evaluation as molecular transporters are reported. The peptides did not show any significant cytotoxicity in different cell lines (MDA-MB-23, SK-OV-3, and HEK 293) at a concentration of 5 µM and after 3 h of incubation time. The uptake of fluorescence-labeled cargo molecules (F'-GpYEEI, F'-siRNA, and F'-3TC) in the presence of the peptides was monitored in different cell lines (SK-OV-3 and MDA-MB-231) with fluorescence-activated cell sorting. Among all the peptides, [WWRR]5 (C4) showed the highest cellular uptake of cargo molecules, indicating it can act as effective molecular transporter. Confocal microscopy in MDA-MB-231 cells showed the cellular uptake of F'-GpYEEI in the presence of C4 and the intracellular localization of fluorescence-labeled C4 (F'-C4) in the cytosol. The F'-C4 cellular uptake was found to be concentration- and time-dependent, as shown by flow cytometry in MDA-MB-231 cells. Confocal microscopy and flow cytometry of F'-C4 in MDA-MB-231 cells were examined alone and in the presence of different endocytosis inhibitors (chlorpromazine, methyl-ß-cyclodextrin, chloroquine, and nystatin). The data showed that the cellular uptake of F'-C4 in the presence of chlorpromazine, chloroquine, and methyl-ß-cyclodextrin was reduced but not completely eliminated, indicating that both energy-independent and energy-dependent pathways contributed to the cellular uptake of F'-C4. Similar results were obtained using the confocal microscopy of C4 and F'-GpYEEI in the presence of endocytosis inhibitors (chlorpromazine, methyl-ß-cyclodextrin, chloroquine, and nystatin). These data indicate that C4 has the potential to be used as a cell-penetrating peptide and cargo transporter.


Asunto(s)
Péptidos de Penetración Celular , Péptidos Cíclicos , Humanos , Péptidos Cíclicos/química , Clorpromazina , Células HEK293 , Nistatina , Línea Celular Tumoral , Endocitosis
3.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894896

RESUMEN

The field of Alzheimer's disease (AD) has witnessed recent breakthroughs in the development of disease-modifying biologics and diagnostic markers. While immunotherapeutic interventions have provided much-awaited solutions, nucleic acid-based tools represent other avenues of intervention; however, these approaches are costly and invasive, and they have serious side effects. Previously, we have shown in AD animal models that tolfenamic acid (TA) can lower the expression of AD-related genes and their products and subsequently reduce pathological burden and improve cognition. Using TA as a scaffold and the zinc finger domain of SP1 as a pharmacophore, we developed safer and more potent brain-penetrating analogs that interfere with sequence-specific DNA binding at transcription start sites and predominantly modulate the expression of SP1 target genes. More importantly, the proteome of treated cells displayed ~75% of the downregulated products as SP1 targets. Specific levels of SP1-driven genes and AD biomarkers such as amyloid precursor protein (APP) and Tau proteins were also decreased as part of this targeted systemic response. These small molecules, therefore, offer a viable alternative to achieving desired therapeutic outcomes by interfering with both amyloid and Tau pathways with limited off-target systemic changes.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , ortoaminobenzoatos/farmacología , ortoaminobenzoatos/uso terapéutico , Proteínas tau/genética , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo
4.
Molecules ; 28(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37241960

RESUMEN

The biological significance of benzopyran-4-ones as cytotoxic agents against multi-drug resistant cancer cell lines and isoxazoles as anti-inflammatory agents in cellular assays prompted us to design and synthesize their hybrid compounds and explore their antiproliferative activity against a panel of six cancer cell lines and two normal cell lines. Compounds 5a-d displayed significant antiproliferative activities against all the cancer cell lines tested, and IC50 values were in the range of 5.2-22.2 µM against MDA-MB-231 cancer cells, while they were minimally cytotoxic to the HEK-293 and LLC-PK1 normal cell lines. The IC50 values of 5a-d against normal HEK-293 cells were in the range of 102.4-293.2 µM. Compound 5a was screened for kinase inhibitory activity, proteolytic human serum stability, and apoptotic activity. The compound was found inactive towards different kinases, while it completely degraded after 2 h of incubation with human serum. At 5 µM concentration, it induced apoptosis in MDA-MB-231 by 50.8%. Overall, these findings suggest that new benzopyran-4-one-isoxazole hybrid compounds, particularly 5a-d, are selective anticancer agents, potentially safe for human cells, and could be synthesized at low cost. Additionally, Compound 5a exhibits potential anticancer activity mediated via inhibition of cancer cell proliferation and induction of apoptosis.


Asunto(s)
Antineoplásicos , Resistencia a Múltiples Medicamentos , Humanos , Células HEK293 , Línea Celular Tumoral , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Benzopiranos/farmacología , Antineoplásicos/farmacología , Proliferación Celular , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga
5.
Molecules ; 28(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38138539

RESUMEN

In our ongoing quest to design effective antimicrobial peptides (AMPs), this study aimed to elucidate the mechanisms governing cyclic amphiphilic AMPs and their interactions with membranes. The objective was to discern the nature of these interactions and understand how peptide sequence and structure influence antimicrobial activity. We introduced modifications into the established cyclic AMP peptide, [W4R4], incorporating an extra aromatic hydrophobic residue (W), a positively charged residue (R), or the unique 2,5-diketopiperazine (DKP). This study systematically explored the structure-activity relationships (SARs) of a series of cyclic peptides derived from the [W4R4] scaffold, including the first synthesis and evaluation of [W4R4(DKP)]. Structural, dynamic, hydrophobic, and membrane-binding properties of four cyclic peptides ([W4R4], [W5R4], [W4R5], [W4R4(DKP)]) were explored using molecular dynamics simulations within a DOPC/DOPG lipid bilayer that mimics the bacterial membrane. The results revealed distinct SARs linking antimicrobial activity to parameters such as conformational plasticity, immersion depth in the bilayer, and population of the membrane binding mode. Notably, [W4R5] exhibited an optimal "activity/binding to the bacterial membrane" pattern. This multidisciplinary approach efficiently decoded finely regulated SAR profiles, laying a foundation for the rational design of novel antimicrobial peptides.


Asunto(s)
Antiinfecciosos , Péptidos Cíclicos , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Péptidos Catiónicos Antimicrobianos/química , Antiinfecciosos/farmacología , Membrana Dobles de Lípidos/química , Secuencia de Aminoácidos , Bacterias/metabolismo
6.
Mol Pharm ; 19(5): 1338-1355, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35347995

RESUMEN

RNA interference (RNAi) is a powerful tool capable of targeting virtually any protein without time-consuming and expensive drug development studies. However, due to obstacles facing efficient and safe delivery, RNAi-based therapeutic approach remains a challenge. Herein, we have designed and synthesized a number of disulfide-constraining cyclic and hybrid peptides using tryptophan and arginine residues. Our hypothesis was that peptide structures would undergo reduction by intracellular glutathione (more abundant in cancer cells) and unpack the small interfering RNA (siRNA) from the peptide/siRNA complexes. A subset of newly developed peptides (specifically, C4 and H4) exhibited effective cellular internalization of siRNA (∼70% of the cell population; monitored by flow cytometry and confocal microscopy), the capability of protecting siRNA against early degradation by nucleases (monitored by gel electrophoresis), minimal cytotoxicity in selected cell lines (studied by cell viability and LC50 calculations), and efficient protein silencing by 70-75% reduction in the expression of targeting signal transducer and activator of transcription 3 (STAT3) in human triple-negative breast cancer (TNBC) MDA-MB-231 cells, analyzed using the Western blot technique. Our results indicate the birth of a promising new family of siRNA delivery systems that are capable of safe and efficient delivery, even in the presence of nucleases.


Asunto(s)
Silenciador del Gen , Péptidos Cíclicos , Línea Celular Tumoral , Disulfuros , Humanos , Oxidación-Reducción , Péptidos/química , Interferencia de ARN , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética
7.
Molecules ; 27(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35630829

RESUMEN

A number of 5'-O-fatty acyl derivatives of 3'-fluoro-2',3'-dideoxythymidine (FLT, 1) were synthesized. These conjugates were evaluated for their potential as topical microbicides with anti-HIV activity against cell-free (X4 and R5), cell-associated, and multidrug-resistant viruses. Compared to FLT and 3'-azido-2',3'-dideoxythymidine (AZT), 5'-O-(12-azidododecanoyl) (5), 5'-O-myristoyl (6), and 5'-O-(12-thioethyldodecanoyl) (8) derivatives of FLT were found to be more active against both cell-free viruses (lymphocytotropic and monocytotropic strains) with EC50 values of 0.4 µM, 1.1 µM, and <0.2 µM, respectively, as well as cell-associated virus with EC50 values of 12.6, 6.4, and 2.3 µM, respectively. Conjugates 5, 6, and 8 exhibited >4 and >30 times better antiviral index than FLT and AZT, respectively. Conjugates 5 and 8 were significantly more potent than FLT against many multidrug-resistant strains. A comparison of the anti-HIV activity with the corresponding non-hydrolyzable ether conjugates suggested that ester hydrolysis to FLT and fatty acids is critical to enable anti-HIV activity. Cellular uptake studies were conducted using fluorescent derivatives of FLT attached with 5(6)-carboxyfluorescein through either ß-alanine (23) or 12-aminododecanoic acid (24) spacers. The lipophilic fluorescent analog with a long chain (24) showed more than 12 times higher cellular uptake profile than the fluorescent analog with a short chain (23). These studies further confirmed that the attachment of fatty acids improved the cellular uptake of nucleoside conjugates. In addition, 5, 6, and 8 were the least cytotoxic and did not alter vaginal cell and sperm viability compared to the positive control, a commercial topical spermicide (N-9), which significantly decreased sperm and vaginal cell viability inducing the generation of proinflammatory cytokines.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Fármacos Anti-VIH/farmacología , Línea Celular , Didesoxinucleósidos , Ésteres , Ácidos Grasos/farmacología
8.
Molecules ; 27(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35566022

RESUMEN

Human malignant melanoma exhibits imbalances in redox status, leading to activation of many redox-sensitive signaling pathways. APE/Ref-1 is a multifunctional protein that serves as a redox chaperone that regulates many nuclear transcription factors and is an important mechanism in cancer cell survival of oxidative stress. Previous studies showed that APE/Ref-1 is a potential druggable target for melanoma therapy. In this study, we synthesized a novel APE/Ref-1 inhibitor, bis-cinnamoyl-1,12-dodecamethylenediamine (2). In a xenograft mouse model, compound 2 treatment (5 mg/kg) significantly inhibited tumor growth compared to the control group, with no significant systemic toxicity observed. We further synthesized compound 2 analogs to determine the structure-activity relationship based on their anti-melanoma activities. Among those, 4-hydroxyphenyl derivative (11) exhibited potent anti-melanoma activities and improved water solubility compared to its parental compound 2. The IC50 of compound 11 was found to be less than 0.1 µM. Compared to other known APE/Ref-1 inhibitors, compound 11 exhibited increased potency in inhibiting melanoma proliferation. As determined by luciferase reporter analyses, compound 2 was shown to effectively inhibit H2O2-activated AP-1 transcription activities. Targeting APE/Ref-1-mediated signaling using pharmaceutical inhibitors is a novel and effective strategy for melanoma treatment with potentially high impact.


Asunto(s)
Hominidae , Melanoma , Animales , Cinamatos/farmacología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Hominidae/metabolismo , Humanos , Peróxido de Hidrógeno , Melanoma/tratamiento farmacológico , Ratones
9.
Molecules ; 27(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35889320

RESUMEN

The activity of nucleoside and nucleotide analogs as antiviral agents requires phosphorylation by endogenous enzymes. Phosphate-substituted analogs have low bioavailability due to the presence of ionizable negatively-charged groups. To circumvent these limitations, several prodrug approaches have been proposed. Herein, we hypothesized that the conjugation or combination of the lipophilic amide bond with nucleotide-based tenofovir (TFV) (1) could improve the anti-HIV activity. During the current study, the hydroxyl group of phosphonates in TFV was conjugated with the amino group of L-alanine, L-leucine, L-valine, and glycine amino acids and other long fatty ester hydrocarbon chains to synthesize 43 derivatives. Several classes of derivatives were synthesized. The synthesized compounds were characterized by 1H NMR, IR, UV, and mass spectrometry. In addition, several of the synthesized compounds were evaluated as racemic mixtures for anti-HIV activity in vitro in a single round infection assay using TZM-bl cells at 100 ng/mL. TFV (1) was used as a positive control and inhibited HIV infection by 35%. Among all the evaluated compounds, the disubstituted heptanolyl ester alanine phosphonamidate with naphthol oleate (69), pentanolyl ester alanine phosphonamidate with phenol oleate (62), and butanolyl ester alanine phosphonamidate with naphthol oleate (87) ester conjugates of TFV were more potent than parent drug TFV with 79.0%, 76.5%, 71.5% inhibition, respectively, at 100 ng/mL. Furthermore, two fatty acyl amide conjugates of tenofovir alafenamide (TAF) were synthesized and evaluated for comparative studies with TAF and TFV conjugates. Tetradecanoyl TAF conjugate 95 inhibited HIV infection by 99.6% at 100 ng/mL and showed comparable activity to TAF (97-99% inhibition) at 10-100 ng/mL but was more potent than TAF when compared at molar concentration.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Alanina/metabolismo , Amidas/metabolismo , Fármacos Anti-VIH/uso terapéutico , Ésteres/metabolismo , Infecciones por VIH/tratamiento farmacológico , VIH-1/metabolismo , Humanos , Naftoles/metabolismo , Nucleótidos/metabolismo , Ácido Oléico/metabolismo , Tenofovir/farmacología
10.
Mol Pharm ; 18(3): 986-1002, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33496597

RESUMEN

RNAi is a biological process that utilizes small interfering RNA (siRNA) to prevent the translation of mRNA to protein. This mechanism could be beneficial in preventing the overexpression of proteins in cancer. However, the cellular delivery of siRNA has proven to be challenging due to its inherent negative charge and relative instability. Here, we designed a multicomponent delivery system composed of a specifically designed peptide (linear or cyclic fatty acyl peptide conjugates and hybrid cyclic/linear peptides) and several lipids (DOTAP, DOPE, cholesterol, and phosphatidylcholine) to form a nanoparticle, which we have termed as peptide lipid-associated nucleic acids (PLANAs). Five formulations were prepared (a formulation with no peptide, which was named lipid-associated nucleic acid or LANA, and PLANA formulations A-D) using a mini extruder to form uniform nanoparticles around 100 nm in size with a slightly positive charge (less than +10 mv). Formulations were evaluated for peptide incorporation, siRNA encapsulation efficiency, release profile, toxicity, cellular uptake, and protein silencing. Our experiments showed effective encapsulation of siRNA (>95%), a controlled release profile, and negligible toxicity in formulations that did not contain a positively charged lipid. The results also revealed that PLANAs C and D exhibited optimum cellular uptake (with 80-90% siRNA-positive cells for most of the formulations). PLANA D formulation was selected to silence two model proteins (Src and RPS6KA5) in the triple-negative human breast cancer cell line MDA-MB-231, with promising silencing efficiency, which diminished the expression of RPS6KA5 and Src to approximately 29 and 38% compared to naïve cells, respectively. Many approaches have been investigated for safe and efficient delivery of nucleic acids in the last 20 years; however, many have failed due to the multifaceted challenges to overcome. Our results show a promising potential for a multicomponent design that incorporates different components for a variety of delivery tasks, which warrants further investigation of PLANAs in vivo.


Asunto(s)
Lípidos/genética , Ácidos Nucleicos de Péptidos/genética , Péptidos/genética , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Silenciador del Gen/fisiología , Técnicas de Transferencia de Gen , Humanos , Lípidos/química , Nanopartículas/química , Ácidos Nucleicos de Péptidos/química , Péptidos/química , Interferencia de ARN/fisiología
11.
Mol Pharm ; 18(10): 3909-3919, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34491768

RESUMEN

The cell membrane properties create a significant obstacle in intracellular delivery of cell-impermeable and negatively charged molecules. Herein, we report the synthesis and biological evaluation of a novel series of hybrid cyclic-linear peptides containing alternative positive and hydrophobic amino acids on the ring and side chain [(RW)5]K(RW)X (X = 1-5) to compare their molecular transporter efficiency. The peptides were synthesized through Fmoc solid-phase peptide synthesis. In vitro cytotoxicity of the peptides showed that the peptides did not exhibit any significant cytotoxicity at the concentration of 10 µM in human leukemia carcinoma cell line (CCRF-CEM), human ovarian adenocarcinoma cells (SK-OV-3), human epithelial embryonic kidney healthy (HEK-293), and human epithelial mammary gland adenocarcinoma cells (MDA-MB-231) after 3 h incubation. The cellular uptake of a fluorescence-labeled phosphopeptide (F'-GpYEEI) and anti-human immunodeficiency virus (HIV) drugs (lamivudine (F'-3TC), emtricitabine (F'-FTC), Stavudine (F'-d4T)), where F' is carboxyfluorescein, was measured in the presence of the peptides in CCRF-CEM and SK-OV-3 cells. Among all peptides, [(RW)5K](RW)5 (10 µM) was the most efficient transporter that improved the cellular uptake of F'-GpYEEI (2 µM) by 18- and 11-fold in CCRF-CEM and SK-OV-3, respectively, compared with F'-GpYEEI alone. Fluorescence-activated cell sorting (FACS) analysis results indicated that the cellular uptake of fluorescence-labeled peptide (F'-[(RW)5K](RW)5) was only partially inhibited by chlorpromazine as an endocytosis inhibitor after 3 h incubation in MDA-MB-231 cells. These data suggest the potential of this series of hybrid cyclic-linear peptides as cell-penetrating peptides and molecular transporters.


Asunto(s)
Péptidos de Penetración Celular/química , Sistemas de Liberación de Medicamentos/métodos , Péptidos Cíclicos/química , Línea Celular Tumoral , Péptidos de Penetración Celular/farmacocinética , Emtricitabina/administración & dosificación , Emtricitabina/farmacocinética , Colorantes Fluorescentes , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lamivudine/administración & dosificación , Lamivudine/farmacocinética , Estructura Molecular , Péptidos Cíclicos/farmacocinética , Estavudina/administración & dosificación , Estavudina/farmacocinética
12.
J Chem Inf Model ; 61(6): 3015-3026, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34000187

RESUMEN

Under-expression or overexpression of protein kinases has been shown to be associated with unregulated cell signal transduction in cancer cells. Therefore, there is major interest in designing protein kinase inhibitors as anticancer agents. We have previously reported [WR]5, a peptide containing alternative arginine (R) and tryptophan (W) residues as a non-competitive c-Src tyrosine kinase inhibitor. A number of larger cyclic peptides containing alternative hydrophobic and positively charged residues [WR]x (x = 6-9) and hybrid cyclic-linear peptides, [R6K]W6 and [R5K]W7, containing R and W residues were evaluated for their protein kinase inhibitory potency. Among all the peptides, cyclic peptide [WR]9 was found to be the most potent tyrosine kinase inhibitor. [WR]9 showed higher inhibitory activity (IC50 = 0.21 µM) than [WR]5, [WR]6, [WR]7, and [WR]8 with IC50 values of 0.81, 0.57, 0.35, and 0.33 µM, respectively, against c-Src kinase as determined by a radioactive assay using [γ-33P]ATP. Consistent with the result above, [WR]9 inhibited other protein kinases such as Abl kinase activity with an IC50 value of 0.35 µM, showing 2.2-fold higher inhibition than [WR]5 (IC50 = 0.79 µM). [WR]9 also inhibited PKCa kinase activity with an IC50 value of 2.86 µM, approximately threefold higher inhibition than [WR]5 (IC50 = 8.52 µM). A similar pattern was observed against Braf, c-Src, Cdk2/cyclin A1, and Lck. [WR]9 exhibited IC50 values of <0.25 µM against Akt1, Alk, and Btk. These data suggest that [WR]9 is consistently more potent than other cyclic peptides with a smaller ring size and hybrid cyclic-linear peptides [R6K]W6 and [R5K]W7 against selected protein kinases. Thus, the presence of R and W residues in the ring, ring size, and the number of amino acids in the structure of the cyclic peptide were found to be critical in protein kinase inhibitory potency. We identified three putative binding pockets through automated blind docking of cyclic peptides [WR](5-9). The most populated pocket is located between the SH2, SH3, and N-lobe domains on the opposite side of the ATP binding site. The second putative pocket is formed by the same domains and located on the ATP binding site side of the protein. Finally, a third pocket was identified between the SH2 and SH3 domains. These results are consistent with the non-competitive nature of the inhibition displayed by these molecules. Molecular dynamics simulations of the protein-peptide complexes indicate that the presence of either [WR]5 or [WR]9 affects the plasticity of the protein and in particular the volume of the ATP binding site pocket in different ways. These results suggest that the second pocket is most likely the site where these peptides bind and offer a plausible rationale for the increased affinity of [WR]9.


Asunto(s)
Péptidos Cíclicos , Inhibidores de Proteínas Quinasas , Secuencia de Aminoácidos , Humanos , Simulación de Dinámica Molecular , Péptidos Cíclicos/farmacología , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Dominios Homologos src
13.
Molecules ; 26(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467522

RESUMEN

Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.


Asunto(s)
Antiinfecciosos/farmacología , Antivirales/farmacología , Péptidos/química , Péptidos/farmacología , Péptidos/uso terapéutico , Aminoácidos/química , Antiinfecciosos/química , Antivirales/química , Simulación por Computador , Cosmecéuticos/química , Cosmecéuticos/uso terapéutico , Suplementos Dietéticos , Técnicas de Transferencia de Gen , Humanos , Lactoferrina/química , Membrana Dobles de Lípidos , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Péptidos/administración & dosificación , Células Madre , Vacunas de Subunidad/química , Vacunas de Subunidad/farmacología , Tratamiento Farmacológico de COVID-19
14.
Molecules ; 25(10)2020 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-32429580

RESUMEN

Remdesivir is a nucleotide prodrug that is currently undergoing extensive clinical trials for the treatment of COVID-19. The prodrug is metabolized to its active triphosphate form and interferes with the action of RNA-dependent RNA polymerase of SARS-COV-2. Herein, we report the antiviral activity of remdesivir against human coronavirus 229E (HCoV-229E) compared to known anti-HIV agents. These agents included tenofovir (TFV), 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), alovudine (FLT), lamivudine (3TC), and emtricitabine (FTC), known as nucleoside reverse-transcriptase inhibitors (NRTIs), and a number of 5'-O-fatty acylated anti-HIV nucleoside conjugates. The anti-HIV nucleosides interfere with HIV RNA-dependent DNA polymerase and/or act as chain terminators. Normal human fibroblast lung cells (MRC-5) were used to determine the cytotoxicity of the compounds. The study revealed that remdesivir exhibited an EC50 value of 0.07 µM against HCoV-229E with TC50 of > 2.00 µM against MRC-5 cells. Parent NRTIs were found to be inactive against (HCoV-229E) at tested concentrations. Among all the NRTIs and 5'-O-fatty acyl conjugates of NRTIs, 5'-O-tetradecanoyl ester conjugate of FTC showed modest activity with EC50 and TC50 values of 72.8 µM and 87.5 µM, respectively. These data can be used for the design of potential compounds against other coronaviruses.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Fármacos Anti-VIH/farmacología , Coronavirus Humano 229E/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/farmacología , Adenosina Monofosfato/farmacología , Alanina/farmacología , Fármacos Anti-VIH/química , Betacoronavirus/efectos de los fármacos , Betacoronavirus/enzimología , COVID-19 , Línea Celular , Coronavirus Humano 229E/enzimología , Infecciones por Coronavirus/tratamiento farmacológico , Humanos , Pandemias , Neumonía Viral/tratamiento farmacológico , ARN Polimerasa Dependiente del ARN/metabolismo , Inhibidores de la Transcriptasa Inversa/química , SARS-CoV-2
15.
Molecules ; 25(9)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370213

RESUMEN

N1-(α,ß-Alkene)-substituted phenylpyrazolopyrimidine derivatives with acetyl and functionalized phenyl groups at α- and ß-positions, respectively, were synthesized by the reaction of 3-phenylpyrazolopyrimidine (PhPP) with bromoacetone, followed by a chalcone reaction with differently substituted aromatic aldehydes. The Src kinase enzyme assay revealed modest inhibitory activity (half maximal inhibitory concentration, IC50 = 21.7-192.1 µM) by a number of PhPP derivatives. Antiproliferative activity of the compounds was evaluated on human leukemia (CCRF-CEM), human ovarian adenocarcinoma (SK-OV-3), breast carcinoma (MDA-MB-231), and colon adenocarcinoma (HT-29) cells in vitro. 4-Chlorophenyl carbo-enyl substituted 3-phenylpyrazolopyrimidine (10) inhibited the cell proliferation of HT-29 and SK-OV-3 by 90% and 79%, respectively, at a concentration of 50 µM after 96 h incubation. The compound showed modest inhibitory activity against c-Src (IC50 = 60.4 µM), Btk (IC50 = 90.5 µM), and Lck (IC50 = 110 µM), while it showed no activity against Abl1, Akt1, Alk, Braf, Cdk2, and PKCa. In combination with target selection and kinase profiling assay, extensive theoretical studies were carried out to explore the selectivity behavior of compound 10. Specific interactions were also explored by examining the changing trends of interactions of tyrosine kinases with the phenylpyrazolopyrimidine derivative. The results showed good agreement with the experimental selectivity pattern among c-Src, Btk, and Lck.


Asunto(s)
Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/síntesis química , Pirimidinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Pirimidinas/química , Relación Estructura-Actividad , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/química
16.
Molecules ; 25(11)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498339

RESUMEN

We have previously reported cyclic cell-penetrating peptides [WR]5 and [WR]4 as molecular transporters. To optimize further the utility of our developed peptides for targeted therapy in cancer cells using the redox condition, we designed a new generation of peptides and evaluated their cytotoxicity as well as uptake behavior against different cancer cell lines. Thus, cyclic [C(WR)xC] and linear counterparts (C(WR)xC), where x = 4-5, were synthesized using Fmoc/tBu solid-phase peptide synthesis, purified, and characterized. The compounds did not show any significant cytotoxicity (at 25 µM) against ovarian (SK-OV-3), leukemia (CCRF-CEM), gastric adenocarcinoma (CRL-1739), breast carcinoma (MDA-MB-231), and normal kidney (LLCPK) cells after 24 and 72 h incubation. Both cyclic [C(WR)5C] and linear (C(WR)5C) demonstrated comparable molecular transporter properties versus [WR]5 in the delivery of a phosphopeptide (F'-GpYEEI) in CCRF-CEM cells. The uptake of F'-GpYEEI in the presence of 1,4-dithiothreitol (DTT) as the reducing agent was significantly improved in case of l(C(WR)5C), while it was not changed by [C(WR)5C]. Fluorescence microscopy also demonstrated a significant uptake of F'-GpYEEI in the presence of l(C(WR)5C). Cyclic [C(WR)5C] improved the uptake of the fluorescent-labeled anti-HIV drugs F'-d4T, F'-3TC, and F'-FTC by 3.0-4.9-fold. These data indicate that both [C(WR)5C] and linear (C(WR)5C) peptides can act as molecular transporters.


Asunto(s)
Arginina/química , Péptidos de Penetración Celular/síntesis química , Disulfuros/química , Triptófano/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Ciclización , Sistemas de Liberación de Medicamentos , Humanos , Estructura Molecular
17.
Mol Pharm ; 16(9): 3727-3743, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31329448

RESUMEN

Cyclic cell-penetrating peptides are relatively a newer class of peptides that have a huge potential for the intracellular delivery of therapeutic agents aimed at treating challenging ailments like multidrug-resistant bacterial diseases, cancer, and HIV infection. Cell-penetrating peptides (CPPs) have been extensively explored as intracellular delivery vehicles; however, they have some inherent limitations like poor stability, endosomal entrapment, toxicity, and suboptimal cell penetration. Owing to their favorable properties that avoid these limitations, cyclic CPPs can provide a good alternative to linear CPPs. Several Reviews have been published in the past decade that cover CPPs and cyclic peptides independently. To the best of our knowledge, this is one of the first Reviews that covers cyclic CPPs comprehensively in the light of studies published so far. In this Review, we have detailed examples of cyclic CPPs, their structures, and cyclization strategies followed by a detailed account of their advantages over their linear counterparts. A hot area in cyclic CPPs is the exploration of cell-penetration mechanisms; this Review highlights this topic in detail. Finally, we will review the applications of cyclic CPPs, followed by conclusions and future prospects.


Asunto(s)
Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Animales , Permeabilidad de la Membrana Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Péptidos de Penetración Celular/clasificación , Portadores de Fármacos/clasificación , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Infecciones por VIH/tratamiento farmacológico , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Péptidos Cíclicos/clasificación , Proteolisis/efectos de los fármacos
18.
Int J Mol Sci ; 20(13)2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31277465

RESUMEN

Prostate cancer (PCa) is the most common malignancy in men and is the leading cause of cancer-related male mortality. A disulfide cyclic peptide ligand [CTVRTSADC] 1 has been previously found to target extra domain B of fibronectin (EDB-FN) in the extracellular matrix that can differentiate aggressive PCa from benign prostatic hyperplasia. We synthesized and optimized the stability of ligand 1 by amide cyclization to obtain [KTVRTSADE] 8 using Fmoc/tBu solid-phase chemistry. Optimized targeting ligand 8 was found to be stable in phosphate buffered saline (PBS, pH 6.5, 7.0, and 7.5) and under redox conditions, with a half-life longer than 8 h. Confocal microscopy studies demonstrated increased binding of ligand 8 to EDB-FN compared to ligand 1. Therefore, we hypothesized that the EDB-FN targeted peptides (1 and 8) conjugated with an anticancer drug via a hydrolyzable linker would provide selective cytotoxicity to the cancer cells. To test our hypothesis, we selected both the normal prostate cell line, RWPE-1, and the cancerous prostate cell lines, PC3, DU-145, LNCaP, and C4-2, to evaluate the anticancer activity of synthesized peptide-drug conjugates. Docetaxel (Doce) and doxorubicin (Dox) were used as anticancer drugs. Dox conjugate 13 containing disulfide linkage showed comparable cytotoxicity versus Dox after 72 h incubation in all the cancer cell lines, whereas it was found to be less cytotoxic on RWPE-1, suggesting that it can act as a Dox prodrug. Doce conjugate 14 was found to be less cytotoxic in all the cell lines as compared to drug alone.


Asunto(s)
Antineoplásicos/uso terapéutico , Fibronectinas/química , Péptidos/química , Neoplasias de la Próstata/tratamiento farmacológico , Secuencia de Aminoácidos , Antineoplásicos/farmacología , Área Bajo la Curva , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Disulfuros/síntesis química , Disulfuros/química , Doxorrubicina/química , Doxorrubicina/farmacología , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Masculino , Neoplasias de la Próstata/patología , Dominios Proteicos , Factores de Tiempo
19.
Molecules ; 25(1)2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31877739

RESUMEN

Gout is an inflammatory arthritis due to the joint deposition of monosodium urate (MSU) crystals. Phagocytosis of MSU crystals by tissue macrophages results in the generation of reactive oxygen species (ROS) and production of inflammatory cytokines and chemokines. Colchicine use in gout is limited by severe toxicity. CD44 is a transmembrane glycoprotein that is highly expressed in tissue macrophages and may be involved in gout pathogenesis. The P6 peptide is a 20-amino acid residue peptide that binds to CD44. We hypothesized that the conjugation of colchicine to the P6 peptide would reduce its off-target cytotoxicity while preserving its anti-inflammatory effect. A modified version of P6 peptide and colchicine-P6 peptide conjugate were synthesized using Fmoc/tBu solid-phase and solution-phase chemistry, respectively. A glutaryl amide was used as a linker. The P6 peptide was evaluated for its binding to CD44, association, and internalization by macrophages. Cytotoxic effects of P6 peptide, colchicine, and colchicine-P6 peptide on macrophages were compared and the inhibition of ROS generation and interleukin-8 (IL-8) secretion in MSU-stimulated macrophages treated with P6 peptide, colchicine, or colchicine-P6 peptide was studied. We confirmed that the P6 peptide binds to CD44 and its association and internalization by macrophages were CD44-dependent. Colchicine (1, 10, and 25 µM) demonstrated a significant cytotoxic effect on macrophages while the P6 peptide and colchicine-P6 peptide conjugate (1, 10 and 25 µM) did not alter the viability of the macrophages. The P6 peptide (10 and 25 µM) reduced ROS generation and IL-8 secretion mediated by a reduction in MSU phagocytosis by macrophages. The colchicine-P6 peptide significantly reduced ROS generation and IL-8 secretion compared to the P6 peptide alone at 1 and 10 µM concentrations. Conjugation of colchicine to the P6 peptide reduced the cytotoxic effect of colchicine while preserving its anti-inflammatory activity.


Asunto(s)
Colchicina/farmacología , Receptores de Hialuranos/metabolismo , Inmunoconjugados/farmacología , Péptidos/química , Colchicina/química , Humanos , Receptores de Hialuranos/química , Inmunoconjugados/química , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Modelos Biológicos , Estructura Molecular , Fagocitosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Células THP-1 , Ácido Úrico/metabolismo
20.
Molecules ; 24(7)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30978971

RESUMEN

Cell-penetrating peptide [WR]5 has been previously shown to be an efficient molecular transporter for various hydrophilic and hydrophobic molecules. The peptide was synthesized using Fmoc/tBu solid-phase chemistry, and one arginine was replaced with one lysine to enable the conjugation with the anticancer drugs. Paclitaxel (PTX) was functionalized with an esterification reaction at the C2' hydroxyl group of PTX with glutaric anhydride and conjugated with the cyclic peptide [W(WR)4K(ßAla)] in DMF to obtain the peptide-drug conjugate PTX1. Furthermore, camptothecin (CPT) was modified at the C(20)-hydroxyl group through the reaction with triphosgene. Then, it was conjugated with two functionalized cyclic peptides through a formyl linker affording two different conjugates, namely CPT1 and CPT2. All the conjugates showed better water solubility as compared to the parent drug. The cytotoxicity assay of the drugs and their conjugates with the peptides were evaluated in the human breast cancer MCF-7 cell line. PTX inhibited cell proliferation by 39% while the PTX-peptide conjugate inhibited the proliferation by ~18% after 72 h incubation. On the other hand, CPT, CPT1, and CPT2 reduced the cell proliferation by 68%, 39%, and 62%, respectively, in the MCF-7 cell lines at 5 µM concentration after 72 h incubation.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Péptidos de Penetración Celular/farmacología , Péptidos Cíclicos/farmacología , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química , Neoplasias de la Mama/patología , Camptotecina/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/química , Esterificación , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Células MCF-7 , Paclitaxel/química , Paclitaxel/farmacología , Péptidos Cíclicos/síntesis química , Técnicas de Síntesis en Fase Sólida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA