RESUMEN
PREMISE OF THE STUDY: Biotic interactions such as seed predation can play a role in explaining patterns of abundance among plant species. The effect of seed predation will depend on how the strength of predation differs across species and environments, and on the degree to which seed loss at one life-cycle phase increases fitness at another phase. Few studies have simultaneously quantified predispersal and postdispersal predation in co-occurring rare and common congeners, despite the value of estimating both for understanding causes of rarity. METHODS: We quantified predispersal seed predation on the rare, herbaceous species Lupinus tidestromii (Fabaceae) and its common, shrubby congener L. chamissonis across multiple years in the same community. We experimentally measured postdispersal seed predation at two seed densities and locations near or far from an exotic grass housing high densities of deer mice (Peromyscus maniculatus), their primary, native seed predator. KEY RESULTS: The common L. chamissonis had the lowest predispersal seed predation of the two lupine species, potentially because of its height: its high racemes received less predation than those low to the ground. By contrast, the same species experienced higher postdispersal seed predation, and at predators traveled long distances away from refuge habitat to consume their seeds. Across both plant species, mice preferentially predated high-density seed sources. CONCLUSIONS: Our results show differences in the magnitude and direction of seed predation between the species across different life-cycle phases. We demonstrated possible roles of proximity to refuge habitat, seed density, and seed size in these patterns. Congeneric comparisons would benefit from a comprehensive framework that considers seed predation across different life-cycle phases and the environmental context of predation.
Asunto(s)
Lupinus/fisiología , Peromyscus/fisiología , Animales , California , Ecosistema , Dinámica Poblacional , Dispersión de Semillas , Semillas/fisiología , SimpatríaRESUMEN
An understanding of the demographic processes contributing to invasions would improve our mechanistic understanding of the invasion process and improve the efficiency of prevention and control efforts. However, field comparisons of the demography of invasive and noninvasive species have not previously been conducted. We compared the in situ demography of 17 introduced plant species in St. Louis, Missouri, USA, to contrast the demographic patterns of invasive species with their less invasive relatives across a broad sample of angiosperms. Using herbarium records to estimate spread rates, we found higher maximum spread rates in the landscape for species classified a priori as invasive than for noninvasive introduced species, suggesting that expert classifications are an accurate reflection of invasion rate. Across 17 species, projected population growth was not significantly greater in invasive than in noninvasive introduced species. Among five taxonomic pairs of close relatives, however, four of the invasive species had higher projected population growth rates compared with their noninvasive relative. A Life Table Response Experiment suggested that the greater projected population growth rate of some invasive species relative to their noninvasive relatives was primarily a result of sexual reproduction. The greater sexual reproduction of invasive species is consistent with invaders having a life history strategy more reliant on fecundity than survival and is consistent with a large role of propagule pressure in invasion. Sexual reproduction is a key demographic correlate of invasiveness, suggesting that local processes influencing sexual reproduction, such as enemy escape, might be of general importance. However, the weak correlation of projected population growth with spread rates in the landscape suggests that regional processes, such as dispersal, may be equally important in determining invasion rate.
Asunto(s)
Especies Introducidas , Desarrollo de la Planta , Plantas/clasificación , Animales , Demografía , Filogenia , Plantas/genética , Reproducción/fisiologíaRESUMEN
The population effects of harvest depend on complex interactions between density dependence, seasonality, stage structure, and management timing. Here we present a periodic nonlinear matrix population model that incorporates seasonal density dependence with stage-selective and seasonally selective harvest. To this model, we apply newly developed perturbation analyses to determine how population densities respond to changes in harvest and demographic parameters. We use the model to examine the effects of popular control strategies and demographic perturbations on the invasive weed garlic mustard (Alliaria petiolata). We find that seasonality is a major factor in harvest outcomes, because population dynamics may depend significantly on both the season of management and the season of observation. Strategies that reduce densities in one season can drive increases in another, with strategies giving positive sensitivities of density in the target seasons leading to compensatory effects that invasive species managers should avoid. Conversely, demographic parameters to which density is very elastic (e.g., seeding survival, second-year rosette spring survival, and the flowering to fruiting adult transition for maximum summer densities) may indicate promising management targets.
Asunto(s)
Brassicaceae/fisiología , Especies Introducidas , Modelos Biológicos , Malezas , Estaciones del Año , Control Biológico de Vectores , Densidad de PoblaciónRESUMEN
Invasive plants may compete with native plants by increasing the pressure of native consumers, a mechanism known as "apparent competition." Apparent competition can be as strong as or stronger than direct competition, but the role of apparent competition has rarely been examined in biological invasions. We used four years of demographic data and seed-removal experiments to determine if introduced grasses caused elevated levels of seed consumption on native plant species in a coastal dune system in California, USA. We show that the endangered, coastal dune plant Lupinus tidestromii experiences high levels of pre-dispersal seed consumption by the native rodent Peromyscus maniculatus due to its proximity to the invasive grass, Ammophila arenaria. We use stage-structured, stochastic population models to project that two of three study populations will decline toward extinction under ambient levels of consumption. For one of these declining populations, a relatively small decrease in consumption pressure should allow for persistence. We show that apparent competition with an invasive species significantly decreases the population growth rate and persistence of a native species. We expect that apparent competition is an important mechanism in other ecosystems because invasive plants often change habitat structure and plant-consumer interactions. Possible implications of the apparent-competition mechanism include selective extinction of species preferred by seed consumers in the presence of an invasive species and biological homogenization of communities toward non-preferred native plant species.
Asunto(s)
Ecosistema , Lupinus/fisiología , Poaceae/fisiología , Animales , California , Demografía , Conducta Alimentaria/fisiología , Peromyscus/fisiologíaRESUMEN
Controlling species invasions is a leading problem for applied ecology. While controlling populations expanding linearly or exponentially is straightforward, intervention in systems with complex dynamics can have complicated, and sometimes counterintuitive, consequences. Most invasive plant populations are stage-structured and density-dependent--a recipe for complex dynamics--and yet few population models have been created to explore the effects of control efforts on such species. We examined the demography of the invasive biennial plant Alliaria petiolata (garlic mustard) on the front of its spread into a natural area and found evidence of strong density dependence in vital rates of first-year rosette and second-year adult stage classes. We parameterized a density-dependent, stage-structured projection model using field-collected data. This model produces two-point cycles with alternating years in which adults vs. rosettes are more prevalent. Such population dynamics match observations in natural populations, suggesting that these complicated population dynamics may result from deterministic rules. We used this model to evaluate simulated management strategies, including herbicide treatment of rosettes and clipping or pulling of adult plants. Management of A. petiolata by inducing mortality of either rosettes or adults will not be effective at reducing population density unless the induced mortality is very high (>95% for rosettes and >85% for adults) and repeated every year. Indeed, induced mortality of rosettes can be counterproductive, causing increases in the stationary distribution of A. petiolata density. This species is typical of many invasive plants (stage-structured, short-lived, high fertility) and exhibits common forms of density dependence. Thus, the management implications of our study should apply broadly to other species with similar life histories. We suggest that management should focus on managing adults rather than rosettes, and on creating efficient control in targeted areas of the population, rather than spreading less efficient efforts widely.
Asunto(s)
Brassicaceae/crecimiento & desarrollo , Brassicaceae/fisiología , Ecosistema , Fertilidad , Modelos Biológicos , Densidad de Población , Dinámica PoblacionalRESUMEN
Many species are adapted to disturbance and occur within dynamic, mosaic landscapes that contain early and late successional microhabitats. Human modification of disturbance regimes alters the availability of microhabitats and may affect the viability of species in these ecosystems. Because restoring historical disturbance regimes is typically expensive and requires action at large spatial scales, such restoration projects must be justified by linking the persistence of species with successional microhabitats. Coastal sand dune ecosystems worldwide are characterized by their endemic biodiversity and frequent disturbance. Dune-stabilizing invasive plants alter successional dynamics and may threaten species in these ecosystems. We examined the distribution and population dynamics of two federally endangered plant species, the annual Layia carnosa and the perennial Lupinus tidestromii, within a dune ecosystem in northern California, USA. We parameterized a matrix population model for L. tidestromii and examined the magnitude by which the successional stage of the habitat (early or late) influenced population dynamics. Both species had higher frequencies and L. tidestromii had higher frequency of seedlings in early successional habitats. Lupinus tidestromii plants in early successional microhabitats had higher projected rates of population growth than those associated with stabilized, late successional habitats, due primarily to higher rates of recruitment in early successional microhabitats. These results support the idea that restoration of disturbance is critical in historically dynamic landscapes. Our results suggest that large-scale restorations are necessary to allow persistence of the endemic plant species that characterize these ecosystems.
Asunto(s)
Biodiversidad , Ecosistema , Especies en Peligro de Extinción , Plantas , California , LupinusRESUMEN
The floral architecture and phenology of the tree species Albizia julibrissin (Fabaceae) offer the potential for flowers within inflorescences to share common pollen donors. Patterns of paternity within individual tree crowns may differ among isolated individuals and those in populations due to differences in pollinator foraging behavior. To determine how genetic diversity is partitioned within individual seed pools and whether these patterns differ among isolated and population trees, we obtained all fruits from three inflorescences from four clusters from three isolated trees and from three population trees in Athens, Georgia. We assayed 14 polymorphic allozymes to genotype all progeny within singly sired fruits to determine the multilocus genotype of each fruit's pollen donor. Inflorescences had multiple pollen donors, but simulation analyses revealed that redundancy of pollen donors tended to be more likely within inflorescences than randomly across the crown. Analysis of genetic and genotypic diversity indicated that individual maternal trees received pollen from many donors in uneven frequencies. Results suggest that isolated trees receive pollen from slightly fewer pollen donors and experience more within-plant pollinator movement than trees in populations. However, isolated trees receive qualitatively similar pollen from many sources, suggesting that these trees are not effectively isolated and that pollen moves long distances in this species.