Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(1): 102-109, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38109875

RESUMEN

The direct and unambiguous detection and identification of individual metabolite molecules present in complex biological mixtures constitute a major challenge in (bio)analytical research. In this context, nuclear magnetic resonance (NMR) spectroscopy has proven to be particularly powerful owing to its ability to provide both qualitative and quantitative atomic-level information on multiple analytes simultaneously in a noninvasive manner. Nevertheless, NMR suffers from a low inherent sensitivity and, moreover, lacks selectivity regarding the number of individual analytes to be studied in a mixture of a myriad of structurally and chemically very different molecules, e.g., metabolites in a biofluid. Here, we describe a method that circumvents these shortcomings via performing selective, photochemically induced dynamic nuclear polarization (photo-CIDNP) enhanced NMR spectroscopy on unmodified complex biological mixtures, i.e., human urine and serum, which yields a single, background-free one-dimensional NMR spectrum. In doing this, we demonstrate that photo-CIDNP experiments on unmodified complex mixtures of biological origin are feasible, can be performed straightforwardly in the native aqueous medium at physiological metabolite concentrations, and act as a spectral filter, facilitating the analysis of NMR spectra of complex biofluids. Due to its noninvasive nature, the method is fully compatible with state-of-the-art metabolomic protocols providing direct spectroscopic information on a small, carefully selected subset of clinically relevant metabolites. We anticipate that this approach, which, in addition, can be combined with existing high-throughput/high-sensitivity NMR methodology, holds great promise for further in-depth studies and development for use in metabolomics and many other areas of analytical research.


Asunto(s)
Imagen por Resonancia Magnética , Metabolómica , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos
2.
BMC Plant Biol ; 24(1): 278, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609866

RESUMEN

BACKGROUND: The availability of soil phosphorus (P) often limits the productivities of wet tropical lowland forests. Little is known, however, about the metabolomic profile of different chemical P compounds with potentially different uses and about the cycling of P and their variability across space under different tree species in highly diverse tropical rainforests. RESULTS: We hypothesised that the different strategies of the competing tree species to retranslocate, mineralise, mobilise, and take up P from the soil would promote distinct soil 31P profiles. We tested this hypothesis by performing a metabolomic analysis of the soils in two rainforests in French Guiana using 31P nuclear magnetic resonance (NMR). We analysed 31P NMR chemical shifts in soil solutions of model P compounds, including inorganic phosphates, orthophosphate mono- and diesters, phosphonates, and organic polyphosphates. The identity of the tree species (growing above the soil samples) explained > 53% of the total variance of the 31P NMR metabolomic profiles of the soils, suggesting species-specific ecological niches and/or species-specific interactions with the soil microbiome and soil trophic web structure and functionality determining the use and production of P compounds. Differences at regional and topographic levels also explained some part of the the total variance of the 31P NMR profiles, although less than the influence of the tree species. Multivariate analyses of soil 31P NMR metabolomics data indicated higher soil concentrations of P biomolecules involved in the active use of P (nucleic acids and molecules involved with energy and anabolism) in soils with lower concentrations of total soil P and higher concentrations of P-storing biomolecules in soils with higher concentrations of total P. CONCLUSIONS: The results strongly suggest "niches" of soil P profiles associated with physical gradients, mostly topographic position, and with the specific distribution of species along this gradient, which is associated with species-specific strategies of soil P mineralisation, mobilisation, use, and uptake.


Asunto(s)
Microbiota , Fósforo , Bosque Lluvioso , Árboles , Guyana Francesa , Fosfatos , Suelo
3.
Chemistry ; 29(60): e202301945, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37523177

RESUMEN

The surface chemistry of Metal-Organic Polyhedra (MOPs) is crucial to their physicochemical properties because it governs how they interact with external substances such as solvents, synthetic organic molecules, metal ions, and even biomolecules. Consequently, the advancement of synthetic methods that facilitate the incorporation of diverse functional groups onto MOP surfaces will significantly broaden the range of properties and potential applications for MOPs. This study describes the use of copper(I)-catalysed, azide-alkyne cycloaddition (CuAAC) click reactions to post-synthetically modify the surface of alkyne-functionalised cuboctahedral MOPs. To this end, a novel Rh(II)-based MOP with 24 available surface alkyne groups was synthesised. Each of the 24 alkyne groups on the surface of the "clickable" Rh-MOP can react with azide-containing molecules at room temperature, without compromising the integrity of the MOP. The wide substrate catalogue and orthogonal nature of CuAAC click chemistry was exploited to densely functionalise MOPs with diverse functional groups, including polymers, carboxylic and phosphonic acids, and even biotin moieties, which retained their recognition capabilities once anchored onto the surface of the MOP.

4.
Angew Chem Int Ed Engl ; 62(42): e202309393, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37607866

RESUMEN

The addition of two unsymmetric malonate esters to the Buckminster fullerene C60 can lead to 22 spectroscopically distinguishable isomeric products and therefore represents a formidable synthesis challenge. In this work, we achieve 87 % selectivity for the formation of a single (in,out-trans-3) isomer by combining three approaches: (i) we use a starting material, in which the two malonates are covalently connected (tether approach); (ii) we form the strong supramolecular complex of C60 with the shape-persistent [10]CPP macrocycle (template approach) and (iii) we embed this complex further within a self-assembled nanocapsule (shadow mask approach). Variation of the spacer chain shed light on the limitations of the approach and the ring dynamics in the unusual [2]catenanes were studied in silico with atomistic resolution. This work significantly widens the scope of mechanically interlocked architectures comprising cycloparaphenylenes (CPP).

5.
Chemistry ; 28(31): e202200357, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35348255

RESUMEN

Water pollution threatens human and environmental health worldwide. Thus, there is a pressing need for new approaches to water purification. Herein, we report a novel supramolecular strategy based on the use of a metal-organic polyhedron (MOP) as a capture agent to remove nitrogenous organic micropollutants from water, even at very low concentrations (ppm), based exclusively on coordination chemistry at the external surface of the MOP. Specifically, we exploit the exohedral coordination positions of RhII -MOP to coordinatively sequester pollutants bearing N-donor atoms in aqueous solution, and then harness their exposed surface carboxyl groups to control their aqueous solubility through acid/base reactions. We validated this approach for removal of benzotriazole, benzothiazole, isoquinoline, and 1-napthylamine from water.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Humanos , Concentración de Iones de Hidrógeno , Metales , Nitrógeno , Agua/química , Contaminantes Químicos del Agua/química
6.
Inorg Chem ; 61(35): 14075-14085, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35997604

RESUMEN

Cobalt-catalyzed C-H amination via M-nitrenoid species is spiking the interest of the research community. Understanding this process at a molecular level is a challenging task, and here we report a well-defined macrocyclic system featuring a pseudo-Oh aryl-CoIII species that reacts with aliphatic azides to effect intramolecular Csp2-N bond formation. Strikingly, a putative aryl-Co═NR nitrenoid intermediate species is formed and is rapidly trapped by a carboxylate ligand to form a carboxylate masked-nitrene, which functions as a shortcut to stabilize and guide the reaction to productive intramolecular Csp2-N bond formation. On one hand, several intermediate species featuring the Csp2-N bond formed have been isolated and structurally characterized, and the essential role of the carboxylate ligand has been proven. Complementarily, a thorough density functional theory study of the Csp2-N bond formation mechanism explains at the molecular level the key role of the carboxylate-masked nitrene species, which is essential to tame the metastability of the putative aryl-CoIII═NR nitrene species to effectively yield the Csp2-N products. The solid molecular mechanistic scheme determined for the Csp2-N bond forming reaction is fully supported by both experimental and computation complementary studies.


Asunto(s)
Ácidos Carboxílicos , Aminación , Ácidos Carboxílicos/química , Catálisis , Iminas , Ligandos , Estructura Molecular
7.
J Am Chem Soc ; 142(46): 19754-19762, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33147013

RESUMEN

The congested nature of quaternary carbons hinders their preparation, most notably when stereocontrol is required. Here we report a biocatalytic method for the creation of quaternary carbon centers with broad substrate scope, leading to different compound classes bearing this structural feature. The key step comprises the aldol addition of 3,3-disubstituted 2-oxoacids to aldehydes catalyzed by metal dependent 3-methyl-2-oxobutanoate hydroxymethyltransferase from E. coli (KPHMT) and variants thereof. The 3,3,3-trisubstituted 2-oxoacids thus produced were converted into 2-oxolactones and 3-hydroxy acids and directly to ulosonic acid derivatives, all bearing gem-dialkyl, gem-cycloalkyl, and spirocyclic quaternary centers. In addition, some of these reactions use a single enantiomer from racemic nucleophiles to afford stereopure quaternary carbons. The notable substrate tolerance and stereocontrol of these enzymes are indicative of their potential for the synthesis of structurally intricate molecules.


Asunto(s)
Aldehídos/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferasas de Hidroximetilo y Formilo/metabolismo , Cetoácidos/metabolismo , Aldehídos/química , Sitios de Unión , Biocatálisis , Dominio Catalítico , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Transferasas de Hidroximetilo y Formilo/química , Transferasas de Hidroximetilo y Formilo/genética , Cetoácidos/química , Mutagénesis Sitio-Dirigida , Estereoisomerismo , Especificidad por Sustrato
8.
Chemistry ; 26(17): 3776-3781, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-31917497

RESUMEN

A new persistent organic free radical has been synthetized with Br atoms occupying the ortho- and para-positions of a trityl core. After the isolation of its two propeller-like atropisomers, Plus (P) and minus (M), their absolute configurations were assigned by a combination of theoretical and experimental data. Remarkably, no hints of racemization were observed up to 60 °C for more than two hours, due to the higher steric hindrance imposed by the bulky Br atoms. Therefore, when compared to its chlorinated homologue (t1/2 =18 s at 60 °C), an outstanding stability against racemization was achieved. A circularly polarized luminescence (CPL) response of both enantiomers was detected. This free radical shows a satisfactory luminescent dissymmetry factor (|glum (592 nm)|≈0.7×10-3 ) despite its pure organic nature and low luminescence quantum yield (LQY). Improved organic magnetic CPL emitters derived from the reported structure can be envisaged thanks to the wide possibilities that Br atoms at para-positions offer for further functionalization.

9.
Chemphyschem ; 21(4): 280-283, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31951093

RESUMEN

The optimum detection and accurate measurement of longer-range (4 J and higher) heteronuclear NMR correlations is described. The magnitude and/or the sign of a wide range of large and small long-range couplings can be simultaneously determined for protonated and non-protonated 13 C and 15 N nuclei using the LR-selHSQMBC experiment.

10.
J Org Chem ; 85(11): 7247-7257, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32401518

RESUMEN

Herein, we perform for the first time a preliminary NMR and computational study of the spiroglycol structure. Spiroglycol is a highly symmetrical molecule, but it should be chiral due to the presence of a chiral axis. The presence of two enantiomers was demonstrated performing NMR enantiodifferentiation experiments using α,α'-bis(trifluoromethyl)-9,10-anthracenedimethanol (ABTE) as a chiral solvating agent (CSA). The addition of 0.6 equiv of ABTE allows the differentiation of several spiroglycol proton signals. The lack of resolution observed in the proton spectrum can be tackled through the corresponding 13C NMR spectrum where a significant enantiodifferentiation at the spirocarbon atom was observed. In order to physically separate both enantiomers, a SPG derivatization with camphorsulfonic acid and Mosher's acid was performed affording the corresponding diastereoisomeric ester mixtures. Computations performed with the Gaussian16 package showed that the enantiodifferentiation is mainly due to the different compound thermodynamics stability.

11.
J Nat Prod ; 83(4): 1275-1282, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32155071

RESUMEN

The detection of ultra-long-range (4JCH and higher) heteronuclear connectivities can complement the conventional use of HMBC/HSQMBC data in structure elucidation NMR studies of proton-deficient natural products, where two-bond and three-bond correlations are usually observed. The performance of the selHSQMBC experiment with respect to its broadband HSQMBC counterpart is evaluated. Despite its frequency-selectivity nature, selHSQMBC efficiently prevents any unwanted signal phase and intensity modulations due to passive proton-proton coupling constants typically involved in HSQMBC. As a result, selHSQMBC offers a significant sensitivity enhancement and provides pure in-phase multiplets, improving the detection levels for short- and long-range cross-peaks corresponding to small heteronuclear coupling values. This is particularly relevant for experiments optimized to small nJCH values (2-3 Hz), referred to as LR-selHSQMBC, where key cross-peaks that are not visible in the equivalent broadband LR-HSQMBC spectrum can become observable in optimum conditions.


Asunto(s)
Productos Biológicos/química , Resonancia Magnética Nuclear Biomolecular/métodos , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular , Protones
12.
Magn Reson Chem ; 58(5): 363-375, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32239575

RESUMEN

Heteronuclear long-range scalar coupling constants (n JCH ) are a valuable tool for solving problems in organic chemistry and are especially suited for stereochemical and configurational analyses of small molecules and natural products. This tutorial will focus on the step-by-step implementation of several 2D 1 H frequency selective HSQMBC experiments for the easy and accurate measurement of either the magnitude or both the magnitude and the sign of long-range n JCH couplings. The performance of these experiments will be showcased with several scenarios in a range of different experimental conditions.

13.
Molecules ; 25(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32877991

RESUMEN

Productivity of tropical lowland moist forests is often limited by availability and functional allocation of phosphorus (P) that drives competition among tree species and becomes a key factor in determining forestall community diversity. We used non-target 31P-NMR metabolic profiling to study the foliar P-metabolism of trees of a French Guiana rainforest. The objective was to test the hypotheses that P-use is species-specific, and that species diversity relates to species P-use and concentrations of P-containing compounds, including inorganic phosphates, orthophosphate monoesters and diesters, phosphonates and organic polyphosphates. We found that tree species explained the 59% of variance in 31P-NMR metabolite profiling of leaves. A principal component analysis showed that tree species were separated along PC 1 and PC 2 of detected P-containing compounds, which represented a continuum going from high concentrations of metabolites related to non-active P and P-storage, low total P concentrations and high N:P ratios, to high concentrations of P-containing metabolites related to energy and anabolic metabolism, high total P concentrations and low N:P ratios. These results highlight the species-specific use of P and the existence of species-specific P-use niches that are driven by the distinct species-specific position in a continuum in the P-allocation from P-storage compounds to P-containing molecules related to energy and anabolic metabolism.


Asunto(s)
Metaboloma , Metabolómica , Fósforo/metabolismo , Bosque Lluvioso , Árboles/metabolismo , Guyana Francesa , Hojas de la Planta/metabolismo , Especificidad de la Especie
14.
Angew Chem Int Ed Engl ; 59(52): 23615-23619, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-32959941

RESUMEN

Chirality plays a fundamental role in nature, but its detection and quantification still face many limitations. To date, the enantiospecific analysis of mixtures necessarily requires prior separation of the individual components. The simultaneous enantiospecific detection of multiple chiral molecules in a mixture represents a major challenge, which would lead to a significantly better understanding of the underlying biological processes; for example, via enantiospecifically analysing metabolites in their native environment. Here, we report on the first in situ enantiospecific detection of a thirty-nine-component mixture. As a proof of concept, eighteen essential amino acids at physiological concentrations were simultaneously enantiospecifically detected using NMR spectroscopy and a chiral solvating agent. This work represents a first step towards the simultaneous multicomponent enantiospecific analysis of complex mixtures, a capability that will have substantial impact on metabolism studies, metabolic phenotyping, chemical reaction monitoring, and many other fields where complex mixtures containing chiral molecules require efficient characterisation.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Estereoisomerismo
15.
Chemphyschem ; 20(3): 356-360, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30485623

RESUMEN

A dual NMR data acquisition strategy to handle and detect two active equivalent transfer pathways is presented and discussed. We illustrate the power of this time-efficient approach by collecting two different 2D spectra simultaneously in a single experiment: i) TOCSY or HSQC-TOCSY spectra with different mixing times, ii) F2-13 C-coupled and decoupled HSQC spectra, iii) conventional and pure-shift HSQC spectra, or iv) complementary HSQC and HSQC-TOCSY spectra.

16.
Adv Synth Catal ; 361(11): 2673-2687, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31680790

RESUMEN

Nitrogen heterocycles are structural motifs found in many bioactive natural products and of utmost importance in pharmaceutical drug development. In this work, a stereoselective synthesis of functionalized N-heterocycles was accomplished in two steps, comprising the biocatalytic aldol addition of ethanal and simple aliphatic ketones such as propanone, butanone, 3-pentanone, cyclobutanone, and cyclopentanone to N-Cbz-protected aminoaldehydes using engineered variants of d-fructose-6-phosphate aldolase from Escherichia coli (FSA) or 2-deoxy-d-ribose-5-phosphate aldolase from Thermotoga maritima (DERA Tma ) as catalysts. FSA catalyzed most of the additions of ketones while DERA Tma was restricted to ethanal and propanone. Subsequent treatment with hydrogen in the presence of palladium over charcoal, yielded low-level oxygenated N-heterocyclic derivatives of piperidine, pyrrolidine and N-bicyclic structures bearing fused cyclobutane and cyclopentane rings, with stereoselectivities of 96-98 ee and 97:3 dr in isolated yields ranging from 35 to 79%.

17.
Magn Reson Chem ; 57(1): 13-29, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29927497

RESUMEN

The development of new tools to improve the quality of nuclear magnetic resonance (NMR) spectra is a challenging task. The concept of "perfect NMR" includes the design of robust pulse sequences that allow an investigator to obtain undistorted pure in-phase signals, with pure absorption lineshapes that are free of phase anomalies derived from undesired J modulations. Here, alternative NMR building blocks to the spin-echo that are based on a general double SE module, known as a perfect-echo, are reviewed. Several implementations to minimize/remove unwanted dispersive contributions in homonuclear and heteronuclear NMR experiments are described and illustrated with some examples of broad interest for small molecules.

18.
Magn Reson Chem ; 57(4): S85-S94, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30676668

RESUMEN

The practical aspects of some NMR experiments designed for the simultaneous acquisition of 2D COSY and 2D TOCSY spectra are presented and discussed. Several techniques involving afterglow-based, coherence transfer pathway (CTP)-based, and NMR by Ordered Acquisition using 1 H-detection (NOAH)-based strategies for the collection of different free-induction signal decays (FIDs) within the same scan are evaluated and compared. These methods offer a faster recording of these spectra in small-molecule NMR when sensitivity is not a limiting factor, with a reduction in spectrometer time about 45-60% when compared with the conventional sequential acquisition of the parent experiments. It is also shown how the optimized design of an extended three-FID approach yields one COSY and two TOCSY spectra simultaneously by combining CTP and NOAH principles in the same experiment, affording substantial sensitivity enhancements per time unit.

19.
Molecules ; 24(24)2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861056

RESUMEN

Natural brassinosteroids possess a 22R, 23R configuration that appears essential for biological activity. It is, therefore, interesting to elucidate if the activity of brassinosteroids with a short side chain depends on the C22 configuration. Herein, we describe the synthesis of new brassinosteroids analogs with 24-norcholane type of side chain and R configuration at C22. The initial reaction is the dihydroxylation of a terminal olefin that leads to S/R epimers. Three different methods were tested in order to evaluate the obtained S/R ratio and the reaction yields. The results indicate that Upjohn dihydroxylation is the most selective reaction giving a 1.0:0.24 S/R ratio, whereas a Sharpless reaction leads to a mixture of 1.0:0.90 S/R with 95% yield. Using the latter mixture and following a previous reported method, benzoylated derivatives and both S and R brassinosteroids analogs were synthesized. All synthesized compounds were completely characterized by NMR spectroscopy, and HRMS of new compounds are also given. In conclusion, a synthetic route for preparation of new analogs of brassinosteroids of 24-norcholane type and R configuration at C22 were described. It is expected that this will help to elucidate if a configuration at C22 is a structural requirement for hormonal growth activity in plants.


Asunto(s)
Brasinoesteroides/química , Técnicas de Química Sintética , Colanos/química , Estructura Molecular , Brasinoesteroides/síntesis química , Colanos/síntesis química , Hidroxilación , Espectroscopía de Resonancia Magnética , Reguladores del Crecimiento de las Plantas
20.
Angew Chem Int Ed Engl ; 58(39): 13904-13911, 2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31338944

RESUMEN

Combining an electrophilic iron complex [Fe(F pda)(THF)]2 (3) [F pda=N,N'-bis(pentafluorophenyl)-o-phenylenediamide] with the pre-activation of α-alkyl-substituted α-diazoesters reagents by LiAl(ORF )4 [ORF =(OC(CF3 )3 ] provides unprecedented access to selective iron-catalyzed intramolecular functionalization of strong alkyl C(sp3 )-H bonds. Reactions occur at 25 °C via α-alkyl-metallocarbene intermediates, and with activity/selectivity levels similar to those of rhodium carboxylate catalysts. Mechanistic investigations reveal a crucial role of the lithium cation in the rate-determining formation of the electrophilic iron-carbene intermediate, which then proceeds by concerted insertion into the C-H bond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA