Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 203(11): 2928-2943, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31653683

RESUMEN

Although IL-15 has been implicated in the pathogenic hyperimmune activation that drives progressive HIV and SIV infection, as well as in the generation of HIV/SIV target cells, it also supports NK and T cell homeostasis and effector activity, potentially benefiting the host. To understand the role of IL-15 in SIV infection and pathogenesis, we treated two cohorts of SIVmac239-infected rhesus macaques (RM; Macaca mulatta), one with chronic infection, the other with primary infection, with a rhesusized, IL-15-neutralizing mAb (versus an IgG isotype control) for up to 10 wk (n = 7-9 RM per group). In both cohorts, anti-IL-15 was highly efficient at blocking IL-15 signaling in vivo, causing 1) profound depletion of NK cells in blood and tissues throughout the treatment period; 2) substantial, albeit transient, depletion of CD8+ effector memory T cells (TEM) (but not the naive and central memory subsets); and 3) CD4+ and CD8+ TEM hyperproliferation. In primary infection, reduced frequencies of SIV-specific effector T cells in an extralymphoid tissue site were also observed. Despite these effects, the kinetics and extent of SIV replication, CD4+ T cell depletion, and the onset of AIDS were comparable between anti-IL-15- and control-treated groups in both cohorts. However, RM treated with anti-IL-15 during primary infection manifested accelerated reactivation of RM rhadinovirus. Thus, IL-15 support of NK cell and TEM homeostasis does not play a demonstrable, nonredundant role in SIV replication or CD4+ T cell deletion dynamics but may contribute to immune control of oncogenic γ-herpesviruses.


Asunto(s)
Interleucina-15/inmunología , Macaca mulatta/inmunología , Transducción de Señal/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Femenino , Masculino , Virus de la Inmunodeficiencia de los Simios/patogenicidad
2.
Eur Respir J ; 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616589

RESUMEN

BACKGROUND: Vitamin C (500 mg·day-1) supplementation for pregnant smokers has been reported to increase newborn pulmonary function and infant forced expiratory flows (FEFs) at 3 months of age. Its effect on airway function through 12 months of age has not been reported. OBJECTIVE: To assess whether vitamin C supplementation to pregnant smokers is associated with a sustained increased airway function in their infants through 12 months of age. METHODS: This is a prespecified secondary outcome of a randomised, double-blind, placebo-controlled trial that randomised 251 pregnant smokers between 13 and 23 weeks of gestation: 125 to 500 mg·day-1 vitamin C and 126 to placebo. Smoking cessation counselling was provided. FEFs performed at 3 and 12 months of age were analysed by repeated measures analysis of covariance. RESULTS: FEFs were performed in 222 infants at 3 months and 202 infants at 12 months of age. The infants allocated to vitamin C had significantly increased FEFs over the first year of life compared to those allocated to placebo. The overall increased flows were: 40.2 mL·sec-1 for FEF75 (adjusted 95% CI for difference 6.6 to 73.8; p=0.025); 58.3 mL·sec-1 for FEF50 (95% CI 10.9 to 105.8; p=0.0081); and 55.1 mL·sec-1 for FEF25-75 (95% CI, 9.7 to 100.5; p=0.013). CONCLUSIONS: In offspring of pregnant smokers randomised to vitamin C versus placebo, vitamin C during pregnancy was associated with a small but significantly increased airway function at 3 and 12 months of age, suggesting a potential shift to a higher airway function trajectory curve. Continued follow-up is underway.

3.
J Virol ; 93(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31315990

RESUMEN

Major histocompatibility complex E (MHC-E) is a highly conserved nonclassical MHC-Ib molecule that tightly binds peptides derived from leader sequences of classical MHC-Ia molecules for presentation to natural killer cells. However, MHC-E also binds diverse foreign and neoplastic self-peptide antigens for presentation to CD8+ T cells. Although the determinants of MHC-E-restricted T cell priming remain unknown, these cells are induced in humans infected with pathogens containing genes that inhibit the transporter associated with antigen processing (TAP). Indeed, mice vaccinated with TAP-inhibited autologous dendritic cells develop T cells restricted by the murine MHC-E homologue, Qa-1b. Here, we tested whether rhesus macaques (RM) vaccinated with viral constructs expressing a TAP inhibitor would develop insert-specific MHC-E-restricted CD8+ T cells. We generated viral constructs coexpressing SIVmac239 Gag in addition to one of three TAP inhibitors: herpes simplex virus 2 ICP47, bovine herpes virus 1 UL49.5, or rhesus cytomegalovirus Rh185. Each TAP inhibitor reduced surface expression of MHC-Ia molecules but did not reduce surface MHC-E expression. In agreement with modulation of surface MHC-Ia levels, TAP inhibition diminished presentation of MHC-Ia-restricted CD8+ T cell epitopes without impacting presentation of peptide antigen bound by MHC-E. Vaccination of macaques with vectors dually expressing SIVmac239 Gag with ICP47, UL49.5, or Rh185 generated Gag-specific CD8+ T cells classically restricted by MHC-Ia but not MHC-E. These data demonstrate that, in contrast to results in mice, TAP inhibition alone is insufficient for priming of MHC-E-restricted T cell responses in primates and suggest that additional unknown mechanisms govern the induction of CD8+ T cells recognizing MHC-E-bound antigen.IMPORTANCE Due to the near monomorphic nature of MHC-E in the human population and inability of many pathogens to inhibit MHC-E-mediated peptide presentation, MHC-E-restricted T cells have become an attractive vaccine target. However, little is known concerning how these cells are induced. Understanding the underlying mechanisms that induce these T cells would provide a powerful new vaccine strategy to an array of neoplasms and viral and bacterial pathogens. Recent studies have indicated a link between TAP inhibition and induction of MHC-E-restricted T cells. The significance of our research is in demonstrating that TAP inhibition alone does not prime MHC-E-restricted T cell generation and suggests that other, currently unknown mechanisms regulate their induction.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Vacunas contra el SIDAS/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Inhibidores Enzimáticos/metabolismo , Macaca mulatta , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacunas contra el SIDAS/administración & dosificación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
4.
J Immunol ; 200(1): 49-60, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29150562

RESUMEN

MHC-E is a highly conserved nonclassical MHC class Ib molecule that predominantly binds and presents MHC class Ia leader sequence-derived peptides for NK cell regulation. However, MHC-E also binds pathogen-derived peptide Ags for presentation to CD8+ T cells. Given this role in adaptive immunity and its highly monomorphic nature in the human population, HLA-E is an attractive target for novel vaccine and immunotherapeutic modalities. Development of HLA-E-targeted therapies will require a physiologically relevant animal model that recapitulates HLA-E-restricted T cell biology. In this study, we investigated MHC-E immunobiology in two common nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM). Compared to humans and MCM, RM expressed a greater number of MHC-E alleles at both the population and individual level. Despite this difference, human, RM, and MCM MHC-E molecules were expressed at similar levels across immune cell subsets, equivalently upregulated by viral pathogens, and bound and presented identical peptides to CD8+ T cells. Indeed, SIV-specific, Mamu-E-restricted CD8+ T cells from RM recognized antigenic peptides presented by all MHC-E molecules tested, including cross-species recognition of human and MCM SIV-infected CD4+ T cells. Thus, MHC-E is functionally conserved among humans, RM, and MCM, and both RM and MCM represent physiologically relevant animal models of HLA-E-restricted T cell immunobiology.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad/metabolismo , Células Asesinas Naturales/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Presentación de Antígeno , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Células Cultivadas , Secuencia Conservada/genética , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Macaca fascicularis , Macaca mulatta , Modelos Animales , Péptidos/inmunología , Péptidos/metabolismo , Antígenos HLA-E
5.
Am J Respir Crit Care Med ; 199(9): 1139-1147, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30522343

RESUMEN

Rationale: We reported a randomized trial demonstrating daily supplemental vitamin C to pregnant smokers significantly improved newborn pulmonary function tests. The current study tests these results in a new cohort using infant pulmonary function tests. Objectives: To determine if infants of pregnant smokers randomized to daily supplemental vitamin C would have improved forced expiratory flows (FEFs) at 3 months of age compared with those randomized to placebo, and to investigate the association of the α5 nicotinic acetylcholine receptor. Methods: A randomized, double-blind, placebo-controlled trial was conducted at three centers. Two hundred fifty-one pregnant smokers were randomized at 13-23 weeks of gestation: 125 randomized to vitamin C (500 mg/d) and 126 to placebo. Measurements and Main Results: The primary outcome was FEF75 at 3 months of age performed with the raised volume rapid thoracic compression technique (Jaeger/Viasys). FEF50 and FEF25-75 obtained from the same expiratory curves were prespecified secondary outcomes. The infants of pregnant smokers randomized to vitamin C (n = 113) had the following FEFs at 3 months of age compared with those randomized to placebo (n = 109) as measured by FEF75 (200.7 vs. 188.7 ml/s; adjusted 95% confidence interval [CI] for difference, -3.33 to 35.64; P = 0.10), FEF50 (436.7 vs. 408.5 ml/s; adjusted 95% CI for difference, 6.10-61.30; P = 0.02), and FEF25-75 (387.4 vs. 365.8 ml/s; adjusted 95% CI for difference, 0.92-55.34; P = 0.04). Infant FEFs seemed to be negatively associated with the maternal risk alleles for the α5 nicotinic acetylcholine receptor (rs16969968). Conclusions: Although the primary outcome of FEF75 was not improved after vitamin C supplementation to pregnant smokers, the predetermined secondary outcomes FEF50 and FEF25-75 were significantly improved. These results extend our previous findings and demonstrate improved airway function (FEF50 and FEF25-75) at 3 months of age in infants after vitamin C supplementation to pregnant smokers. Clinical trial registered with www.clinicaltrials.gov (NCT01723696).


Asunto(s)
Ácido Ascórbico/uso terapéutico , Efectos Tardíos de la Exposición Prenatal/prevención & control , Fumar/efectos adversos , Administración Oral , Adulto , Ácido Ascórbico/administración & dosificación , Suplementos Dietéticos , Método Doble Ciego , Femenino , Flujo Espiratorio Forzado , Humanos , Lactante , Embarazo , Complicaciones del Embarazo , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico
6.
Biol Reprod ; 98(2): 197-207, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29293939

RESUMEN

Anti-Müllerian hormone (AMH) plays a key role during ovarian follicular development, with local actions associated with a dynamic secretion profile by growing follicles. While results for AMH effects on antral follicle growth and function are consistent among studies in various species, any effects on preantral follicle development remain controversial. Therefore, experiments were conducted to investigate the direct actions and role of AMH during follicle development at the preantral stage. Macaque-specific short-hairpin RNAs (shRNAs) targeting AMH mRNA were incorporated into adenoviral vectors to decrease AMH gene expression in rhesus macaque follicles. Secondary follicles were isolated from adult macaque ovaries and cultured individually in the ultra-low-attachment dish containing defined medium supplemented with follicle-stimulating hormone and insulin for 5 weeks. Follicles were randomly assigned to treatment groups: (a) control, (b) nontargeting control shRNA-vector, (c) AMH shRNA-vector, (d) AMH shRNA-vector + recombinant human AMH, and (e) recombinant human AMH. Follicle survival and growth were assessed. Culture media were analyzed for steroid hormone and paracrine factor concentrations. For in vivo study, the nontargeting control shRNA-vector and AMH shRNA-vector were injected into macaque ovaries. Ovaries were collected 9 days postinjection for morphology and immunohistochemistry assessment. Decreased AMH expression reduced preantral follicle survival and growth in nonhuman primates. Supplemental AMH treatment in the culture media promoted preantral follicle growth to the small antral stage in vitro with increased steroid hormone and paracrine factor production, as well as oocyte maturation. These data demonstrate that AMH is a critical follicular paracrine/autocrine factor positively impacting preantral follicle survival and growth in primates.


Asunto(s)
Hormona Antimülleriana/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Animales , Hormona Antimülleriana/genética , Femenino , Técnicas de Maduración In Vitro de los Oocitos/métodos , Macaca mulatta , Folículo Ovárico/metabolismo
7.
PLoS Pathog ; 12(10): e1005891, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27736984

RESUMEN

Chikungunya virus (CHIKV) is a re-emerging global pathogen with pandemic potential, which causes fever, rash and debilitating arthralgia. Older adults over 65 years are particularly susceptible to severe and chronic CHIKV disease (CHIKVD), accounting for >90% of all CHIKV-related deaths. There are currently no approved vaccines or antiviral treatments available to limit chronic CHIKVD. Here we show that in old mice excessive, dysregulated TGFß production during acute infection leads to a reduced immune response and subsequent chronic disease. Humans suffering from CHIKV infection also exhibited high TGFß levels and a pronounced age-related defect in neutralizing anti-CHIKV antibody production. In vivo reduction of TGFß levels minimized acute joint swelling, restored neutralizing antibody production and diminished chronic joint pathology in old mice. This study identifies increased and dysregulated TGFß secretion as one key mechanism contributing to the age-related loss of protective anti-CHIKV-immunity leading to chronic CHIKVD.


Asunto(s)
Envejecimiento/inmunología , Fiebre Chikungunya/inmunología , Factor de Crecimiento Transformador beta/inmunología , Adulto , Anciano , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Virus Chikungunya , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Factor de Crecimiento Transformador beta/biosíntesis
8.
PLoS Pathog ; 12(11): e1006014, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27829026

RESUMEN

Cytomegaloviruses (CMV) are highly species-specific due to millennia of co-evolution and adaptation to their host, with no successful experimental cross-species infection in primates reported to date. Accordingly, full genome phylogenetic analysis of multiple new CMV field isolates derived from two closely related nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM), revealed distinct and tight lineage clustering according to the species of origin, with MCM CMV isolates mirroring the limited genetic diversity of their primate host that underwent a population bottleneck 400 years ago. Despite the ability of Rhesus CMV (RhCMV) laboratory strain 68-1 to replicate efficiently in MCM fibroblasts and potently inhibit antigen presentation to MCM T cells in vitro, RhCMV 68-1 failed to productively infect MCM in vivo, even in the absence of host CD8+ T and NK cells. In contrast, RhCMV clone 68-1.2, genetically repaired to express the homologues of the HCMV anti-apoptosis gene UL36 and epithelial cell tropism genes UL128 and UL130 absent in 68-1, efficiently infected MCM as evidenced by the induction of transgene-specific T cells and virus shedding. Recombinant variants of RhCMV 68-1 and 68-1.2 revealed that expression of either UL36 or UL128 together with UL130 enabled productive MCM infection, indicating that multiple layers of cross-species restriction operate even between closely related hosts. Cumulatively, these results implicate cell tropism and evasion of apoptosis as critical determinants of CMV transmission across primate species barriers, and extend the macaque model of human CMV infection and immunology to MCM, a nonhuman primate species with uniquely simplified host immunogenetics.


Asunto(s)
Infecciones por Citomegalovirus/transmisión , Citomegalovirus/genética , Modelos Animales de Enfermedad , Macaca fascicularis/virología , Macaca mulatta/virología , Animales , Infecciones por Citomegalovirus/genética , ADN Viral/análisis , ADN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Especificidad de la Especie
9.
J Immunol ; 197(4): 1183-98, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27430715

RESUMEN

IL-15 has been implicated as a key regulator of T and NK cell homeostasis in multiple systems; however, its specific role in maintaining peripheral T and NK cell populations relative to other γ-chain (γc) cytokines has not been fully defined in primates. In this article, we address this question by determining the effect of IL-15 inhibition with a rhesusized anti-IL-15 mAb on T and NK cell dynamics in rhesus macaques. Strikingly, anti-IL-15 treatment resulted in rapid depletion of NK cells and both CD4(+) and CD8(+) effector memory T cells (TEM) in blood and tissues, with little to no effect on naive or central memory T cells. Importantly, whereas depletion of NK cells was nearly complete and maintained as long as anti-IL-15 treatment was given, TEM depletion was countered by the onset of massive TEM proliferation, which almost completely restored circulating TEM numbers. Tissue TEM, however, remained significantly reduced, and most TEM maintained very high turnover throughout anti-IL-15 treatment. In the presence of IL-15 inhibition, TEM became increasingly more sensitive to IL-7 stimulation in vivo, and transcriptional analysis of TEM in IL-15-inhibited monkeys revealed engagement of the JAK/STAT signaling pathway, suggesting alternative γc cytokine signaling may support TEM homeostasis in the absence of IL-15. Thus, IL-15 plays a major role in peripheral maintenance of NK cells and TEM However, whereas most NK cell populations collapse in the absence of IL-15, TEM can be maintained in the face of IL-15 inhibition by the activity of other homeostatic regulators, most likely IL-7.


Asunto(s)
Homeostasis/inmunología , Interleucina-15/inmunología , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/inmunología , Linfocitos T/inmunología , Animales , Separación Celular , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Inmunohistoquímica , Interleucina-15/antagonistas & inhibidores , Interleucina-17/inmunología , Macaca mulatta , Análisis de Secuencia por Matrices de Oligonucleótidos
10.
J Immunol ; 196(7): 3064-78, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26944928

RESUMEN

Advancement in immunogen selection and vaccine design that will rapidly elicit a protective Ab response is considered critical for HIV vaccine protective efficacy. Vaccine-elicited Ab responses must therefore have the capacity to prevent infection by neutralization-resistant phenotypes of transmitted/founder (T/F) viruses that establish infection in humans. Most vaccine candidates to date have been ineffective at generating Abs that neutralize T/F or early variants. In this study, we report that coimmunizing rhesus macaques with HIV-1 gp160 DNA and gp140 trimeric protein selected from native envelope gene sequences (envs) induced neutralizing Abs against Tier 2 autologous viruses expressing cognate envelope (Env). The Env immunogens were selected from envs emerging during the earliest stages of neutralization breadth developing within the first 2 years of infection in two clade B-infected human subjects. Moreover, the IgG responses in macaques emulated the targeting to specific regions of Env known to be associated with autologous and heterologous neutralizing Abs developed within the human subjects. Furthermore, we measured increasing affinity of macaque polyclonal IgG responses over the course of the immunization regimen that correlated with Tier 1 neutralization. In addition, we report firm correlations between Tier 2 autologous neutralization and Tier 1 heterologous neutralization, as well as overall TZM-bl breadth scores. Additionally, the activation of Env-specific follicular helper CD4 T cells in lymphocytes isolated from inguinal lymph nodes of vaccinated macaques correlated with Tier 2 autologous neutralization. These results demonstrate the potential for native Env derived from subjects at the time of neutralization broadening as effective HIV vaccine elements.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Afinidad de Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Modelos Animales de Enfermedad , Epítopos/inmunología , Inmunización , Esquemas de Inmunización , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Tejido Linfoide/inmunología , Macaca mulatta , Pruebas de Neutralización , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA