RESUMEN
The metagenome embedded in urban sewage is an attractive new data source to understand urban ecology and assess human health status at scales beyond a single host. Analyzing the viral fraction of wastewater in the ongoing COVID-19 pandemic has shown the potential of wastewater as aggregated samples for early detection, prevalence monitoring, and variant identification of human diseases in large populations. However, using census-based population size instead of real-time population estimates can mislead the interpretation of data acquired from sewage, hindering assessment of representativeness, inference of prevalence, or comparisons of taxa across sites. Here, we show that taxon abundance and sub-species diversisty in gut-associated microbiomes are new feature space to utilize for human population estimation. Using a population-scale human gut microbiome sample of over 1,100 people, we found that taxon-abundance distributions of gut-associated multi-person microbiomes exhibited generalizable relationships with respect to human population size. Here and throughout this paper, the human population size is essentially the sample size from the wastewater sample. We present a new algorithm, MicrobiomeCensus, for estimating human population size from sewage samples. MicrobiomeCensus harnesses the inter-individual variability in human gut microbiomes and performs maximum likelihood estimation based on simultaneous deviation of multiple taxa's relative abundances from their population means. MicrobiomeCensus outperformed generic algorithms in data-driven simulation benchmarks and detected population size differences in field data. New theorems are provided to justify our approach. This research provides a mathematical framework for inferring population sizes in real time from sewage samples, paving the way for more accurate ecological and public health studies utilizing the sewage metagenome.
Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Microbioma Gastrointestinal/genética , Humanos , Pandemias , Densidad de Población , Aguas del Alcantarillado , Aguas ResidualesRESUMEN
Direct sampling of building wastewater has the potential to enable "precision public health" observations and interventions. Temporal sampling offers additional dynamic information that can be used to increase the informational content of individual metabolic "features", but few studies have focused on high-resolution sampling. Here, we sampled three spatially close buildings, revealing individual metabolomics features, retention time (rt) and mass-to-charge ratio (mz) pairs, that often possess similar stationary statistical properties, as expected from aggregate sampling. However, the temporal profiles of features-providing orthogonal information to physicochemical properties-illustrate that many possess different feature temporal dynamics (fTDs) across buildings, with large and unpredictable single day deviations from the mean. Internal to a building, numerous and seemingly unrelated features, with mz and rt differences up to hundreds of Daltons and seconds, display highly correlated fTDs, suggesting non-obvious feature relationships. Data-driven building classification achieves high sensitivity and specificity, and extracts building-identifying features found to possess unique dynamics. Analysis of fTDs from many short-duration samples allows for tailored community monitoring with applicability in public health studies.
Asunto(s)
Aguas Residuales/química , Industria de la Construcción , Estudios LongitudinalesRESUMEN
[Purpose] This study aimed to investigate the effects of circular gait training on balance and balance confidence in patients with stroke. [Subjects and Methods] Fifteen patients with stroke were randomly divided into either the circular gait training (CGT) group (n=8) or the straight gait training (SGT) group (n=7). Both groups had conventional therapy that adhered to the neurodevelopmental treatment (NDT) approach, for 30â min. In addition, the CGT group performed circular gait training, and the SGT group practiced straight gait training for 30â min. Each intervention was applied for 1 h, 5 days a week, for 2 weeks. Berg Balance Scale (BBS), Timed Up and Go (TUG) test, and Activities-specific Balance Confidence (ABC) scale were used to test balance and balance confidence. [Results] After the intervention, both groups showed significant increases in balance and balance confidence. Significant improvements in the balance of the CGT group compared with the SGT group were observed at post-assessment. [Conclusion] This study showed that circular gait training significantly improves balance in patients with stroke.
RESUMEN
The design and synthesis of novel cyanopropyl polysilsesquioxane hollow spheres lead to production of a highly active and stable catalyst in the reduction of 4-nitrophenol catalyzed by Au nanoparticles.