Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(21): 12058-12070, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36477580

RESUMEN

Human gene research generates new biology insights with translational potential, yet few studies have considered the health of the human gene literature. The accessibility of human genes for targeted research, combined with unreasonable publication pressures and recent developments in scholarly publishing, may have created a market for low-quality or fraudulent human gene research articles, including articles produced by contract cheating organizations known as paper mills. This review summarises the evidence that paper mills contribute to the human gene research literature at scale and outlines why targeted gene research may be particularly vulnerable to systematic research fraud. To raise awareness of targeted gene research from paper mills, we highlight features of problematic manuscripts and publications that can be detected by gene researchers and/or journal staff. As improved awareness and detection could drive the further evolution of paper mill-supported publications, we also propose changes to academic publishing to more effectively deter and correct problematic publications at scale. In summary, the threat of paper mill-supported gene research highlights the need for all researchers to approach the literature with a more critical mindset, and demand publications that are underpinned by plausible research justifications, rigorous experiments and fully transparent reporting.


Asunto(s)
Fraude , Investigación Genética , Publicaciones Periódicas como Asunto , Humanos , Edición
2.
Parasitology ; 148(10): 1125-1136, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33843511

RESUMEN

Previously, it was suggested that haemadipsid leeches represent an important vector of trypanosomes amongst native animals in Australia. Consequently, Chtonobdella bilineata leeches were investigated for the presence of trypanosome species by polymerase chain reaction (PCR), DNA sequencing and in vitro isolation. Phylogenetic analysis ensued to further define the populations present. PCR targeting the 28S rDNA demonstrated that over 95% of C. bilineata contained trypanosomes; diversity profiling by deep amplicon sequencing of 18S rDNA indicated the presence of four different clusters related to the Trypanosoma (Megatrypanum) theileri. Novy­MacNeal­Nicolle slopes with liquid overlay were used to isolate trypanosomes into culture that proved similar in morphology to Trypanosoma cyclops in that they contained a large numbers of acidocalcisomes. Phylogeny of 18S rDNA/GAPDH/ND5 DNA sequences from primary cultures and subclones showed the trypanosomes were monophyletic, with T. cyclops as a sister group. Blood-meal analysis of leeches showed that leeches primarily contained blood from swamp wallaby (Wallabia bicolour), human (Homo sapiens) or horse (Equus sp.). The leech C. bilineata is a host for at least five lineages of Trypanosoma sp. and these are monophyletic with T. cyclops; we propose Trypanosoma cyclops australiensis as a subspecies of T. cyclops based on genetic similarity and biogeography considerations.


Asunto(s)
Interacciones Huésped-Parásitos , Sanguijuelas/parasitología , Trypanosoma/aislamiento & purificación , Animales , ADN Protozoario/análisis , ADN Ribosómico/análisis , Nueva Gales del Sur , Reacción en Cadena de la Polimerasa
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5049-5066, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38194106

RESUMEN

Human gene research studies that describe wrongly identified nucleotide sequence reagents have been mostly identified in journals of low to moderate impact factor, where unreliable findings could be considered to have limited influence on future research. This study examined whether papers describing wrongly identified nucleotide sequences are also published in high-impact-factor cancer research journals. We manually verified nucleotide sequence identities in original Molecular Cancer articles published in 2014, 2016, 2018, and 2020, including nucleotide sequence reagents that were claimed to target circRNAs. Using keywords identified in some 2018 and 2020 Molecular Cancer papers, we also verified nucleotide sequence identities in 2020 Oncogene papers that studied miRNA(s) and/or circRNA(s). Overall, 3.8% (251/6647) and 4.0% (47/1165) nucleotide sequences that were verified in Molecular Cancer and Oncogene papers, respectively, were found to be wrongly identified. Wrongly identified nucleotide sequences were distributed across 18% (91/500) original Molecular Cancer papers, including 38% (31/82) Molecular Cancer papers from 2020, and 40% (21/52) selected Oncogene papers from 2020. Original papers with wrongly identified nucleotide sequences were therefore unexpectedly frequent in two high-impact-factor cancer research journals, highlighting the risks of employing journal impact factors or citations as proxies for research quality.


Asunto(s)
Factor de Impacto de la Revista , Neoplasias , Publicaciones Periódicas como Asunto , Humanos , Neoplasias/genética , Secuencia de Bases , MicroARNs/genética , ARN Circular/genética , Investigación Biomédica
4.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35022248

RESUMEN

Nucleotide sequence reagents underpin molecular techniques that have been applied across hundreds of thousands of publications. We have previously reported wrongly identified nucleotide sequence reagents in human research publications and described a semi-automated screening tool Seek & Blastn to fact-check their claimed status. We applied Seek & Blastn to screen >11,700 publications across five literature corpora, including all original publications in Gene from 2007 to 2018 and all original open-access publications in Oncology Reports from 2014 to 2018. After manually checking Seek & Blastn outputs for >3,400 human research articles, we identified 712 articles across 78 journals that described at least one wrongly identified nucleotide sequence. Verifying the claimed identities of >13,700 sequences highlighted 1,535 wrongly identified sequences, most of which were claimed targeting reagents for the analysis of 365 human protein-coding genes and 120 non-coding RNAs. The 712 problematic articles have received >17,000 citations, including citations by human clinical trials. Given our estimate that approximately one-quarter of problematic articles may misinform the future development of human therapies, urgent measures are required to address unreliable gene research articles.


Asunto(s)
Secuencia de Bases/genética , Investigación Genética , Genoma Humano/genética , Publicaciones/estadística & datos numéricos , Error Científico Experimental/estadística & datos numéricos , Genética Humana/normas , Humanos , Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA