Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 92(2): 469-495, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594906

RESUMEN

Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.


Asunto(s)
Encéfalo , Circulación Cerebrovascular , Marcadores de Spin , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión
2.
Magn Reson Med ; 90(1): 34-50, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36892973

RESUMEN

PURPOSE: To evaluate potential modeling paradigms and the impact of relaxation time effects on human blood-brain barrier (BBB) water exchange measurements using FEXI (BBB-FEXI), and to quantify the accuracy, precision, and repeatability of BBB-FEXI exchange rate estimates at 3 T $$ \mathrm{T} $$ . METHODS: Three modeling paradigms were evaluated: (i) the apparent exchange rate (AXR) model; (ii) a two-compartment model ( 2 CM $$ 2\mathrm{CM} $$ ) explicitly representing intra- and extravascular signal components, and (iii) a two-compartment model additionally accounting for finite compartmental T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ relaxation times ( 2 CM r $$ 2{\mathrm{CM}}_r $$ ). Each model had three free parameters. Simulations quantified biases introduced by the assumption of infinite relaxation times in the AXR and 2 CM $$ 2\mathrm{CM} $$ models, as well as the accuracy and precision of all three models. The scan-rescan repeatability of all paradigms was quantified for the first time in vivo in 10 healthy volunteers (age range 23-52 years; five female). RESULTS: The assumption of infinite relaxation times yielded exchange rate errors in simulations up to 42%/14% in the AXR/ 2 CM $$ 2\mathrm{CM} $$ models, respectively. Accuracy was highest in the compartmental models; precision was best in the AXR model. Scan-rescan repeatability in vivo was good for all models, with negligible bias and repeatability coefficients in grey matter of RC AXR = 0 . 43 $$ {\mathrm{RC}}_{\mathrm{AXR}}=0.43 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ , RC 2 CM = 0 . 51 $$ {\mathrm{RC}}_{2\mathrm{CM}}=0.51 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ , and RC 2 CM r = 0 . 61 $$ {\mathrm{RC}}_{2{\mathrm{CM}}_r}=0.61 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ . CONCLUSION: Compartmental modelling of BBB-FEXI signals can provide accurate and repeatable measurements of BBB water exchange; however, relaxation time and partial volume effects may cause model-dependent biases.


Asunto(s)
Barrera Hematoencefálica , Agua , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Barrera Hematoencefálica/diagnóstico por imagen , Algoritmos , Simulación por Computador , Imagen por Resonancia Magnética
3.
NMR Biomed ; 36(11): e5009, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37666494

RESUMEN

A technique for quantifying regional blood-brain barrier (BBB) water exchange rates using contrast-enhanced arterial spin labelling (CE-ASL) is presented and evaluated in simulations and in vivo. The two-compartment ASL model describes the water exchange rate from blood to tissue, k b , but to estimate k b in practice it is necessary to separate the intra- and extravascular signals. This is challenging in standard ASL data owing to the small difference in T 1 values. Here, a gadolinium-based contrast agent is used to increase this T 1 difference and enable the signal components to be disentangled. The optimal post-contrast blood T 1 ( T 1 , b post ) at 3 T was determined in a sensitivity analysis, and the accuracy and precision of the method quantified using Monte Carlo simulations. Proof-of-concept data were acquired in six healthy volunteers (five female, age range 24-46 years). The sensitivity analysis identified the optimal T 1 , b post at 3 T as 0.8 s. Simulations showed that k b could be estimated in individual cortical regions with a relative error ϵ < 1 % and coefficient of variation CoV = 30 %; however, a high dependence on blood T 1 was also observed. In volunteer data, mean parameter values in grey matter were: arterial transit time t A = 1 . 15 ± 0 . 49 s, cerebral blood flow f = 58 . 0 ± 14 . 3 mL blood/min/100 mL tissue and water exchange rate k b = 2 . 32 ± 2 . 49 s-1 . CE-ASL can provide regional BBB water exchange rate estimates; however, the clinical utility of the technique is dependent on the achievable accuracy of measured T 1 values.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/fisiología , Agua , Imagen por Resonancia Magnética/métodos , Sustancia Gris , Marcadores de Spin , Circulación Cerebrovascular/fisiología
4.
Mov Disord ; 38(12): 2269-2281, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37964373

RESUMEN

BACKGROUND: Increasing evidence points to a pathophysiological role for the cerebellum in Parkinson's disease (PD). However, regional cerebellar changes associated with motor and non-motor functioning remain to be elucidated. OBJECTIVE: To quantify cross-sectional regional cerebellar lobule volumes using three dimensional T1-weighted anatomical brain magnetic resonance imaging from the global ENIGMA-PD working group. METHODS: Cerebellar parcellation was performed using a deep learning-based approach from 2487 people with PD and 1212 age and sex-matched controls across 22 sites. Linear mixed effects models compared total and regional cerebellar volume in people with PD at each Hoehn and Yahr (HY) disease stage, to an age- and sex- matched control group. Associations with motor symptom severity and Montreal Cognitive Assessment scores were investigated. RESULTS: Overall, people with PD had a regionally smaller posterior lobe (dmax = -0.15). HY stage-specific analyses revealed a larger anterior lobule V bilaterally (dmax = 0.28) in people with PD in HY stage 1 compared to controls. In contrast, smaller bilateral lobule VII volume in the posterior lobe was observed in HY stages 3, 4, and 5 (dmax = -0.76), which was incrementally lower with higher disease stage. Within PD, cognitively impaired individuals had lower total cerebellar volume compared to cognitively normal individuals (d = -0.17). CONCLUSIONS: We provide evidence of a dissociation between anterior "motor" lobe and posterior "non-motor" lobe cerebellar regions in PD. Whereas less severe stages of the disease are associated with larger motor lobe regions, more severe stages of the disease are marked by smaller non-motor regions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Estudios Transversales , Imagen por Resonancia Magnética , Cerebelo , Encéfalo
5.
Mov Disord ; 37(5): 1028-1039, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35165920

RESUMEN

BACKGROUND: Clinical diagnosis and monitoring of Parkinson's disease (PD) remain challenging because of the lack of an established biomarker. Neuromelanin-magnetic resonance imaging (NM-MRI) is an emerging biomarker of nigral depigmentation indexing the loss of melanized neurons but has unknown prospective diagnostic and tracking performance in multicenter settings. OBJECTIVES: The aim was to investigate the diagnostic accuracy of NM-MRI in early PD in a multiprotocol setting and to determine and compare serial NM-MRI changes in PD and controls. METHODS: In this longitudinal case-control 3 T MRI study, 148 patients and 97 controls were included from six UK clinical centers, of whom 140 underwent a second scan after 1.5 to 3 years. An automated template-based analysis was applied for subregional substantia nigra NM-MRI contrast and volume assessment. A point estimate of the period of prediagnostic depigmentation was computed. RESULTS: All NM metrics performed well to discriminate patients from controls, with receiver operating characteristic showing 85% accuracy for ventral NM contrast and 83% for volume. Generalizability using a priori volume cutoff was good (79% accuracy). Serial MRI demonstrated accelerated NM loss in patients compared to controls. Ventral NM contrast loss was point estimated to start 5 to 6 years before clinical diagnosis. Ventral nigral depigmentation was greater in the most affected side, more severe cases, and nigral NM volume change correlated with change in motor severity. CONCLUSIONS: We demonstrate that NM-MRI provides clinically useful diagnostic information in early PD across protocols, platforms, and sites. It provides methods and estimated depigmentation rates that highlight the potential to detect preclinical PD and track progression for biomarker-enabled clinical trials. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Biomarcadores , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Melaninas , Enfermedad de Parkinson/diagnóstico , Estudios Prospectivos , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/patología
6.
Magn Reson Med ; 86(3): 1314-1329, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33780045

RESUMEN

PURPOSE: We sought to determine the degree to which oxygen extraction fraction (OEF) estimated using quantitative susceptibility mapping (QSM) depends on two critical acquisition parameters that have a significant impact on acquisition time: voxel size and final echo time. METHODS: Four healthy volunteers were imaged using a range of isotropic voxel sizes and final echo times. The 0.7 mm data were downsampled at different stages of QSM processing by a factor of 2 (to 1.4 mm), 3 (2.1 mm), or 4 (2.8 mm) to determine the impact of voxel size on each analysis step. OEF was estimated from 11 veins of varying diameter. Inter- and intra-session repeatability were estimated for the optimal protocol by repeat scanning in 10 participants. RESULTS: Final echo time was found to have no significant effect on OEF. The effect of voxel size was significant, with larger voxel sizes underestimating OEF, depending on the proximity of the vein to the superficial surface of the brain and on vein diameter. The last analysis step of estimating vein OEF values from susceptibility images had the largest dependency on voxel size. Inter-session coefficients of variation on OEF estimates of between 5.2% and 8.7% are reported, depending on the vein. CONCLUSION: QSM acquisition times can be minimized by reducing the final echo time but an isotropic voxel size no larger than 1 mm is needed to accurately estimate OEF in most medium/large veins in the brain. Such acquisitions can be achieved in under 4 min.


Asunto(s)
Mapeo Encefálico , Oxígeno , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Humanos , Imagen por Resonancia Magnética , Consumo de Oxígeno
7.
Magn Reson Med ; 86(4): 1888-1903, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34002894

RESUMEN

PURPOSE: Dynamic contrast-enhanced (DCE) -MRI with Patlak model analysis is increasingly used to quantify low-level blood-brain barrier (BBB) leakage in studies of pathophysiology. We aimed to investigate systematic errors due to physiological, experimental, and modeling factors influencing quantification of the permeability-surface area product PS and blood plasma volume vp , and to propose modifications to reduce the errors so that subtle differences in BBB permeability can be accurately measured. METHODS: Simulations were performed to predict the effects of potential sources of systematic error on conventional PS and vp quantification: restricted BBB water exchange, reduced cerebral blood flow, arterial input function (AIF) delay and B1+ error. The impact of targeted modifications to the acquisition and processing were evaluated, including: assumption of fast versus no BBB water exchange, bolus versus slow injection of contrast agent, exclusion of early data from model fitting and B1+ correction. The optimal protocol was applied in a cohort of recent mild ischaemic stroke patients. RESULTS: Simulation results demonstrated substantial systematic errors due to the factors investigated (absolute PS error ≤ 4.48 × 10-4 min-1 ). However, these were reduced (≤0.56 × 10-4 min-1 ) by applying modifications to the acquisition and processing pipeline. Processing modifications also had substantial effects on in-vivo normal-appearing white matter PS estimation (absolute change ≤ 0.45 × 10-4 min-1 ). CONCLUSION: Measuring subtle BBB leakage with DCE-MRI presents unique challenges and is affected by several confounds that should be considered when acquiring or interpreting such data. The evaluated modifications should improve accuracy in studies of neurodegenerative diseases involving subtle BBB breakdown.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Barrera Hematoencefálica/diagnóstico por imagen , Medios de Contraste , Humanos , Imagen por Resonancia Magnética
8.
NMR Biomed ; 34(7): e4510, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33723901

RESUMEN

The effects of Alzheimer's disease (AD) and ageing on blood-brain barrier (BBB) breakdown are investigated in TgF344-AD and wild-type rats aged 13, 18 and 21 months. Permeability surface area products of the BBB to water (PSw ) and gadolinium-based contrast agent (PSg ) were measured in grey matter using multiflip angle multiecho dynamic contrast-enhanced MRI. At 13 months of age, there was no significant difference in PSw between TgF344-AD and wild-types (p = 0.82). Between 13 and 18 months, PSw increased in TgF344-AD rats (p = 0.027), but not in wild-types (p = 0.99), leading to significantly higher PSw in TgF344-AD rats at 18 months, as previously reported (p = 0.012). Between 18 and 21 months, PSw values increased in wild-types (p = 0.050), but not in TgF344-AD rats (p = 0.50). These results indicate that BBB water permeability is affected by both AD pathology and ageing, but that changes occur earlier in the presence of AD pathology. There were no significant genotype or ageing effects on PSg (p > 0.05). In conclusion, we detected increases in BBB water permeability with age in TgF344-AD and wild-type rats, and found that changes occurred at an earlier age in rats with AD pathology.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Barrera Hematoencefálica/patología , Agua , Animales , Femenino , Hipocampo/metabolismo , Masculino , Modelos Biológicos , Permeabilidad , Ratas Endogámicas F344 , Ratas Transgénicas
9.
Mov Disord ; 36(11): 2583-2594, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34288137

RESUMEN

BACKGROUND: Brain structure abnormalities throughout the course of Parkinson's disease have yet to be fully elucidated. OBJECTIVE: Using a multicenter approach and harmonized analysis methods, we aimed to shed light on Parkinson's disease stage-specific profiles of pathology, as suggested by in vivo neuroimaging. METHODS: Individual brain MRI and clinical data from 2357 Parkinson's disease patients and 1182 healthy controls were collected from 19 sources. We analyzed regional cortical thickness, cortical surface area, and subcortical volume using mixed-effects models. Patients grouped according to Hoehn and Yahr stage were compared with age- and sex-matched controls. Within the patient sample, we investigated associations with Montreal Cognitive Assessment score. RESULTS: Overall, patients showed a thinner cortex in 38 of 68 regions compared with controls (dmax  = -0.20, dmin  = -0.09). The bilateral putamen (dleft  = -0.14, dright  = -0.14) and left amygdala (d = -0.13) were smaller in patients, whereas the left thalamus was larger (d = 0.13). Analysis of staging demonstrated an initial presentation of thinner occipital, parietal, and temporal cortices, extending toward rostrally located cortical regions with increased disease severity. From stage 2 and onward, the bilateral putamen and amygdala were consistently smaller with larger differences denoting each increment. Poorer cognition was associated with widespread cortical thinning and lower volumes of core limbic structures. CONCLUSIONS: Our findings offer robust and novel imaging signatures that are generally incremental across but in certain regions specific to disease stages. Our findings highlight the importance of adequately powered multicenter collaborations. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Enfermedad de Parkinson/complicaciones , Tálamo/patología
10.
Eur J Neurosci ; 51(8): 1784-1793, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31705723

RESUMEN

Magnetic resonance spectroscopy (MRS) is a research tool for measuring the concentration of metabolites such as γ-aminobutyric acid (GABA) and glutamate in the brain. MEGA-PRESS has been the preferred pulse sequence for GABA measurements due to low physiological GABA concentrations, hence low signal. To compensate, researchers incorporate long acquisition durations (7-10 min) making functional measurements of this metabolite challenging. Here, the acquisition duration and sample sizes required to detect specific concentration changes in GABA using MEGA-PRESS at 3 T are presented for both between-groups and within-session study designs. 75 spectra were acquired during rest using MEGA-PRESS from 41 healthy volunteers in 6 different brain regions at 3 T with voxel sizes between 13 and 22 cm3 . Between-group and within-session variance was calculated for different acquisition durations and power calculations were performed to determine the number of subjects required to detect a given percentage change in GABA/NAA signal ratio. Within-subject variability was assessed by sampling different segments of a single acquisition. Power calculations suggest that detecting a 15% change in GABA using a 2 min acquisition and a 27 cm3 voxel size, depending on the region, requires between 8 and 93 subjects using a within-session design. A between-group design typically requires more participants to detect the same difference. In brain regions with suboptimal shimming, the subject numbers can be up to 4-fold more. Collecting data for longer than 4 min in brain regions examined in this study is deemed unnecessary, as variance in the signal did not reduce further for longer durations.


Asunto(s)
Imagen por Resonancia Magnética , Ácido gamma-Aminobutírico , Encéfalo/diagnóstico por imagen , Ácido Glutámico , Humanos , Espectroscopía de Resonancia Magnética
11.
Epilepsy Behav ; 104(Pt B): 106396, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31371203

RESUMEN

There is an important bidirectional relationship between seizures and cerebrovascular disease (CVD). Aside from poststroke epilepsy, Occult CVD is an important cause of late-onset seizures (LOS) and late-onset epilepsy (LOE). Late-onset seizures/LOE are associated with a threefold increased risk of subsequent clinical stroke. This relationship exists not only in later life, but with 'late-onset' seizures or epilepsy occurring from the fourth decade of life onwards. There is increasing evidence for the importance of hypertension and cerebral small vessel disease (SVD) in epileptogenesis, but there is a considerable need for further work to elucidate underlying mechanisms. There may be a disproportionately increased risk of intracerebral hemorrhage (ICH) after LOS/LOE; this too requires further study. There is also a bidirectional relationship between LOS/LOE and cognitive impairment/dementia: it is likely that there are important interactions between vascular and neurodegenerative pathological processes mediating LOE, stroke, and dementia. There is a pressing need for better epidemiological and natural history data as well as elucidation of epileptogenic mechanisms, in order to progress our understanding and to better inform clinical practice.


Asunto(s)
Trastornos Cerebrovasculares/complicaciones , Trastornos Cerebrovasculares/diagnóstico , Epilepsia/diagnóstico , Epilepsia/etiología , Convulsiones/diagnóstico , Convulsiones/etiología , Humanos , Hipertensión/complicaciones , Hipertensión/diagnóstico , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico
12.
Proc Natl Acad Sci U S A ; 114(33): 8871-8876, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28765375

RESUMEN

Frequency-dependent plasticity (FDP) describes adaptation at the synapse in response to stimulation at different frequencies. Its consequence on the structure and function of cortical networks is unknown. We tested whether cortical "resonance," favorable stimulation frequencies at which the sensory cortices respond maximally, influenced the impact of FDP on perception, functional topography, and connectivity of the primary somatosensory cortex using psychophysics and functional imaging (fMRI). We costimulated two digits on the hand synchronously at, above, or below the resonance frequency of the somatosensory cortex, and tested subjects' accuracy and speed on tactile localization before and after costimulation. More errors and slower response times followed costimulation at above- or below-resonance, respectively. Response times were faster after at-resonance costimulation. In the fMRI, the cortical representations of the two digits costimulated above-resonance shifted closer, potentially accounting for the poorer performance. Costimulation at-resonance did not shift the digit regions, but increased the functional coupling between them, potentially accounting for the improved response time. To relate these results to synaptic plasticity, we simulated a network of oscillators incorporating Hebbian learning. Two neighboring patches embedded in a cortical sheet, mimicking the two digit regions, were costimulated at different frequencies. Network activation outside the stimulated patches was greatest at above-resonance frequencies, reproducing the spread of digit representations seen with fMRI. Connection strengths within the patches increased following at-resonance costimulation, reproducing the increased fMRI connectivity. We show that FDP extends to the cortical level and is influenced by cortical resonance.


Asunto(s)
Imagen por Resonancia Magnética , Modelos Neurológicos , Plasticidad Neuronal/fisiología , Percepción/fisiología , Corteza Somatosensorial , Femenino , Humanos , Masculino , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/fisiología
13.
Neuroimage ; 184: 349-358, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30219292

RESUMEN

Blood-brain barrier (BBB) breakdown has been hypothesized to play a key role in the onset and progression of Alzheimer's disease (AD). However, the question of whether AD itself contributes to loss of BBB integrity is still uncertain, as many in-vivo studies have failed to detect signs of AD-related BBB breakdown. We hypothesize AD-related BBB damage is subtle, and that these negative results arise from a lack of measurement sensitivity. With the aim of developing a more sensitive measure of BBB breakdown, we have designed a novel MRI scanning protocol to quantify the trans-BBB exchange of endogenous water. Using this method, we detect increased BBB water permeability in a rat model of AD that is associated with reduced expression of the tight junction protein occludin. BBB permeability to MRI contrast agent, assessed using dynamic contrast-enhanced (DCE)-MRI, did not differ between transgenic and wild-type animals and was uncorrelated with occludin expression. Our data supports the occurrence of AD-related BBB breakdown, and indicates that such BBB pathology is subtle and may be undetectable using existing 'tracer leakage' methods. Our validated water-exchange MRI method provides a new powerful tool with which to study BBB damage in-vivo.


Asunto(s)
Enfermedad de Alzheimer/patología , Barrera Hematoencefálica/patología , Imagen por Resonancia Magnética/métodos , Animales , Encéfalo/patología , Permeabilidad Capilar/fisiología , Ratas , Ratas Transgénicas , Agua/análisis
14.
PLoS Biol ; 14(5): e1002451, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27137944

RESUMEN

Sleep plays a role in memory consolidation. This is demonstrated by improved performance and neural plasticity underlying that improvement after sleep. Targeted memory reactivation (TMR) allows the manipulation of sleep-dependent consolidation through intentionally biasing the replay of specific memories in sleep, but the underlying neural basis of these altered memories remains unclear. We use functional magnetic resonance imaging (fMRI) to show a change in the neural representation of a motor memory after targeted reactivation in slow-wave sleep (SWS). Participants learned two serial reaction time task (SRTT) sequences associated with different auditory tones (high or low pitch). During subsequent SWS, one sequence was reactivated by replaying the associated tones. Participants were retested on both sequences the following day during fMRI. As predicted, they showed faster reaction times for the cued sequence after targeted memory reactivation. Furthermore, increased activity in bilateral caudate nucleus and hippocampus for the cued relative to uncued sequence was associated with time in SWS, while increased cerebellar and cortical motor activity was related to time in rapid eye movement (REM) sleep. Functional connectivity between the caudate nucleus and hippocampus was also increased after targeted memory reactivation. These findings suggest that the offline performance gains associated with memory reactivation are supported by altered functional activity in key cognitive and motor networks, and that this consolidation is differentially mediated by both REM sleep and SWS.


Asunto(s)
Encéfalo/fisiología , Aprendizaje/fisiología , Sueño/fisiología , Adolescente , Adulto , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Experimentación Humana no Terapéutica , Polisomnografía , Tiempo de Reacción , Sueño REM/fisiología
15.
NMR Biomed ; 31(1)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29130590

RESUMEN

γ-Aminobutyric acid (GABA) and glutamate (Glu), major neurotransmitters in the brain, are recycled through glutamine (Gln). All three metabolites can be measured by magnetic resonance spectroscopy in vivo, although GABA measurement at 3 T requires an extra editing acquisition, such as Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS). In a GABA-edited MEGA-PRESS spectrum, Glu and Gln co-edit with GABA, providing the possibility to measure all three in one acquisition. In this study, we investigated the reliability of the composite Glu + Gln (Glx) peak estimation and the possibility of Glu and Gln separation in GABA-edited MEGA-PRESS spectra. The data acquired in vivo were used to develop a quality assessment framework which identified MEGA-PRESS spectra in which Glu and Gln could be estimated reliably. Phantoms containing Glu, Gln, GABA and N-acetylaspartate (NAA) at different concentrations were scanned using GABA-edited MEGA-PRESS at 3 T. Fifty-six sets of spectra in five brain regions were acquired from 36 healthy volunteers. Based on the Glu/Gln ratio, data were classified as either within or outside the physiological range. A peak-by-peak quality assessment was performed on all data to investigate whether quality metrics can discriminate between these two classes of spectra. The quality metrics were as follows: the GABA signal-to-noise ratio, the NAA linewidth and the Glx Cramer-Rao lower bound (CRLB). The Glu and Gln concentrations were estimated with precision across all phantoms with a linear relationship between the measured and true concentrations: R1 = 0.95 for Glu and R1 = 0.91 for Gln. A quality assessment framework was set based on the criteria necessary for a good GABA-edited MEGA-PRESS spectrum. Simultaneous criteria of NAA linewidth <8 Hz and Glx CRLB <16% were defined as optimum features for reliable Glu and Gln quantification. Glu and Gln can be reliably quantified from GABA-edited MEGA-PRESS acquisitions. However, this reliability should be controlled using the quality assessment methods suggested in this work.


Asunto(s)
Ácido Glutámico/metabolismo , Glutamina/metabolismo , Imagen por Resonancia Magnética , Ácido gamma-Aminobutírico/metabolismo , Adulto , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Adulto Joven
16.
Magn Reson Med ; 78(4): 1257-1266, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27797108

RESUMEN

PURPOSE: Glutathione (GSH) is an important intracellular antioxidant in the brain. A number of studies report its measurement by localized 1 H spectroscopy using PRESS and STEAM. This study evaluates the reliability and accuracy of GSH measurements from PRESS at 3 Tesla (T) and compares the results to those obtained with MEGA-PRESS. METHODS: Phantoms containing brain metabolites, identical except for variable GSH concentration between 0 and 24 mM, were scanned using PRESS (echo time (TE) = 35 ms) and MEGA-PRESS (optimized TE = 130 ms) at 3 T. Spectra of the anterior cingulate cortex and occipital cortex in seven healthy volunteers were also acquired. RESULTS: Phantom GSH concentrations from 0 to 3mM were unreliably quantified using PRESS, although at 4 mM and above there was a linear relationship between measured and true concentrations (R2 = 0.99). Using MEGA-PRESS, there was no signal detected at 0 mM GSH, plus a linear relationship (R2 = 0.99) over the full range from 0-24 mM. In brain, concentrations calculated from MEGA-PRESS and PRESS were significantly different in occipital cortex (P < 0.001). Moreover, only MEGA-PRESS reported significant differences in GSH between the two brain regions (P = 0.003). CONCLUSION: Due to uncertainties in GSH quantification raised by the study, the authors conclude that physiological concentrations (<4 mM) of GSH cannot be reliably quantified from PRESS (TE = 35 ms) spectra at 3 T. Magn Reson Med 78:1257-1266, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Química Encefálica/fisiología , Encéfalo/diagnóstico por imagen , Glutatión/análisis , Imagen por Resonancia Magnética/métodos , Adulto , Encéfalo/metabolismo , Femenino , Glutatión/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador , Adulto Joven
17.
PLoS Comput Biol ; 12(2): e1004740, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26914905

RESUMEN

Neural oscillations occur within a wide frequency range with different brain regions exhibiting resonance-like characteristics at specific points in the spectrum. At the microscopic scale, single neurons possess intrinsic oscillatory properties, such that is not yet known whether cortical resonance is consequential to neural oscillations or an emergent property of the networks that interconnect them. Using a network model of loosely-coupled Wilson-Cowan oscillators to simulate a patch of cortical sheet, we demonstrate that the size of the activated network is inversely related to its resonance frequency. Further analysis of the parameter space indicated that the number of excitatory and inhibitory connections, as well as the average transmission delay between units, determined the resonance frequency. The model predicted that if an activated network within the visual cortex increased in size, the resonance frequency of the network would decrease. We tested this prediction experimentally using the steady-state visual evoked potential where we stimulated the visual cortex with different size stimuli at a range of driving frequencies. We demonstrate that the frequency corresponding to peak steady-state response inversely correlated with the size of the network. We conclude that although individual neurons possess resonance properties, oscillatory activity at the macroscopic level is strongly influenced by network interactions, and that the steady-state response can be used to investigate functional networks.


Asunto(s)
Potenciales Evocados Visuales/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Corteza Visual/fisiología , Biología Computacional , Simulación por Computador , Humanos
18.
J Infect Dis ; 213(10): 1651-60, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26712949

RESUMEN

BACKGROUND: Encephalitis is parenchymal brain inflammation, commonly due to herpes simplex virus (HSV). Key host inflammatory mediators and their relationship to blood-brain barrier (BBB) permeability, neuroimaging changes, and disease outcome are poorly understood. METHODS: We measured levels of 38 mediators in serum (n = 78) and cerebrospinal fluid (n = 37) specimens from patients with encephalitis, including 17 with disease due to HSV infection. Outcome measures were Glasgow coma and outcome scores; CSF to serum albumin ratio, reflecting BBB permeability; and, in patients with HSV infection, magnetic resonance imaging-based temporal lobe volume. RESULTS: Serum interleukin 1 receptor antagonist (IL-1RA) levels were elevated in patients with a good outcome (P= .004). Among patients infected with HSV, the ratio of CSF IL-1ß to IL-1RA was associated with a worse outcome (P= .009); a ratio of ≥0.55 pg/mL had high specificity and sensitivity for a poor outcome (100% and 83%;P= .015). Temporal lobe volume had a negative correlation with serum IL-1RA level (P= .012) and a positive correlation with serum IL-1α level (P= .0003) and CSF IL-1ß level (P= .007). A normal coma score was associated with an elevated interleukin 10 (IL-10) level in serum specimens from HSV-infected patients (P= .007) and CSF specimens from all patients (P= .016); the IL-10 level correlated inversely with BBB permeability (P= .005). CONCLUSIONS: A proinflammatory cytokine response is associated with greater clinical severity, BBB permeability, and neuroimaging damage during encephalitis. IL-1 antagonists should be investigated as adjunctive treatment in encephalitis.


Asunto(s)
Barrera Hematoencefálica , Permeabilidad Capilar , Encefalitis por Herpes Simple/inmunología , Mediadores de Inflamación , Interleucina-1/metabolismo , Albúminas/líquido cefalorraquídeo , Estudios de Cohortes , Encefalitis por Herpes Simple/sangre , Encefalitis por Herpes Simple/líquido cefalorraquídeo , Inglaterra , Escala de Coma de Glasgow , Humanos , Mediadores de Inflamación/sangre , Mediadores de Inflamación/líquido cefalorraquídeo , Proteína Antagonista del Receptor de Interleucina 1/sangre , Proteína Antagonista del Receptor de Interleucina 1/líquido cefalorraquídeo , Interleucina-1/sangre , Interleucina-1/líquido cefalorraquídeo , Interleucina-10/sangre , Interleucina-10/líquido cefalorraquídeo , Interleucina-1beta/sangre , Interleucina-1beta/líquido cefalorraquídeo , Imagen por Resonancia Magnética , Neuroimagen , Estudios Prospectivos , Albúmina Sérica/análisis , Simplexvirus/inmunología , Lóbulo Temporal/patología
19.
Cereb Cortex ; 25(11): 4299-309, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25787833

RESUMEN

Diffusion magnetic resonance imaging (MRI) allows for the noninvasive in vivo examination of anatomical connections in the human brain, which has an important role in understanding brain function. Validation of this technique is vital, but has proved difficult due to the lack of an adequate gold standard. In this work, the macaque visual system was used as a model as an extensive body of literature of in vivo and postmortem tracer studies has established a detailed understanding of the underlying connections. We performed probabilistic tractography on high angular resolution diffusion imaging data of 2 ex vivo, in vitro macaque brains. Comparisons were made between identified connections at different thresholds of probabilistic connection "strength," and with various tracking optimization strategies previously proposed in the literature, and known connections from the detailed visual system wiring map described by Felleman and Van Essen (1991; FVE91). On average, 74% of connections that were identified by FVE91 were reproduced by performing the most successfully optimized probabilistic diffusion MRI tractography. Further comparison with the results of a more recent tracer study ( Markov et al. 2012) suggests that the fidelity of tractography in estimating the presence or absence of interareal connections may be greater than this.


Asunto(s)
Mapeo Encefálico , Vías Nerviosas/anatomía & histología , Corteza Visual/anatomía & histología , Algoritmos , Animales , Imagen de Difusión por Resonancia Magnética , Imagenología Tridimensional , Macaca mulatta , Curva ROC , Reproducibilidad de los Resultados
20.
J Neurosci ; 34(48): 15870-6, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25429129

RESUMEN

Memories are gradually consolidated after initial encoding, and this can sometimes lead to a transition from implicit to explicit knowledge. The exact physiological processes underlying this reorganization remain unclear. Here, we used a serial reaction time task to determine whether targeted memory reactivation (TMR) of specific memory traces during slow-wave sleep promotes the emergence of explicit knowledge. Human participants learned two 12-item sequences of button presses (A and B). These differed in both cue order and in the auditory tones associated with each of the four fingers (one sequence had four higher-pitched tones). Subsequent overnight sleep was monitored, and the tones associated with one learned sequence were replayed during slow-wave sleep. After waking, participants demonstrated greater explicit knowledge (p = 0.005) and more improved procedural skill (p = 0.04) for the cued sequence relative to the uncued sequence. Furthermore, fast spindles (13.5-15 Hz) at task-related motor regions predicted overnight enhancement in procedural skill (r = 0.71, p = 0.01). Auditory cues had no effect on post-sleep memory performance in a control group who received TMR before sleep. These findings suggest that TMR during sleep can alter memory representations and promote the emergence of explicit knowledge, supporting the notion that reactivation during sleep is a key mechanism in this process.


Asunto(s)
Señales (Psicología) , Memoria/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Sueño/fisiología , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA