Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cell ; 83(19): 3533-3545.e5, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802026

RESUMEN

CRISPR-Cas9 is a powerful gene-editing technology; however, off-target activity remains an important consideration for therapeutic applications. We have previously shown that force-stretching DNA induces off-target activity and hypothesized that distortions of the DNA topology in vivo, such as negative DNA supercoiling, could reduce Cas9 specificity. Using single-molecule optical-tweezers, we demonstrate that negative supercoiling λ-DNA induces sequence-specific Cas9 off-target binding at multiple sites, even at low forces. Using an adapted CIRCLE-seq approach, we detect over 10,000 negative-supercoiling-induced Cas9 off-target double-strand breaks genome-wide caused by increased mismatch tolerance. We further demonstrate in vivo that directed local DNA distortion increases off-target activity in cells and that induced off-target events can be detected during Cas9 genome editing. These data demonstrate that Cas9 off-target activity is regulated by DNA topology in vitro and in vivo, suggesting that cellular processes, such as transcription and replication, could induce off-target activity at previously overlooked sites.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma , ADN/genética , Pinzas Ópticas
2.
Mol Cell ; 81(12): 2583-2595.e6, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33961797

RESUMEN

53BP1 influences genome stability via two independent mechanisms: (1) regulating DNA double-strand break (DSB) repair and (2) enhancing p53 activity. We discovered a protein, Tudor-interacting repair regulator (TIRR), that associates with the 53BP1 Tudor domain and prevents its recruitment to DSBs. Here, we elucidate how TIRR affects 53BP1 function beyond its recruitment to DSBs and biochemically links the two distinct roles of 53BP1. Loss of TIRR causes an aberrant increase in the gene transactivation function of p53, affecting several p53-mediated cell-fate programs. TIRR inhibits the complex formation between the Tudor domain of 53BP1 and a dimethylated form of p53 (K382me2) that is poised for transcriptional activation of its target genes. TIRR mRNA expression levels negatively correlate with the expression of key p53 target genes in breast and prostate cancers. Further, TIRR loss is selectively not tolerated in p53-proficient tumors. Therefore, we establish that TIRR is an important inhibitor of the 53BP1-p53 complex.


Asunto(s)
Linaje de la Célula/genética , Proteínas de Unión al ARN/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Linaje de la Célula/fisiología , ADN/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Histonas/metabolismo , Humanos , Unión Proteica , Proteínas de Unión al ARN/fisiología , Dominio Tudor , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/fisiología
3.
Nature ; 543(7644): 211-216, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28241136

RESUMEN

P53-binding protein 1 (53BP1) is a multi-functional double-strand break repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumours to poly-ADP-ribose polymerase-1 (PARP) inhibitors. Central to all 53BP1 activities is its recruitment to double-strand breaks via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, Tudor interacting repair regulator (TIRR), that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, the protein kinase ataxia-telangiectasia mutated (ATM) phosphorylates 53BP1 and recruits RAP1-interacting factor 1 (RIF1) to dissociate the 53BP1-TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to double-strand breaks. Depletion of TIRR destabilizes 53BP1 in the nuclear-soluble fraction and alters the double-strand break-induced protein complex centring 53BP1. These findings identify TIRR as a new factor that influences double-strand break repair using a unique mechanism of masking the histone methyl-lysine binding function of 53BP1.


Asunto(s)
Proteínas Portadoras/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/antagonistas & inhibidores , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Sitios de Unión , Roturas del ADN de Doble Cadena , Reparación del ADN , Femenino , Humanos , Metilación , Ratones , Ratones Endogámicos C57BL , Fosforilación , Unión Proteica , Dominios Proteicos , Proteínas de Unión al ARN , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/química
4.
Nano Lett ; 17(3): 1733-1740, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28145723

RESUMEN

Selective killing of cancer cells while minimizing damage to healthy tissues is the goal of clinical radiation therapy. This therapeutic ratio can be improved by image-guided radiation delivery and selective radiosensitization of cancer cells. Here, we have designed and tested a novel trimodal theranostic nanoparticle made of bismuth and gadolinium for on-site radiosensitization and image contrast enhancement to improve the efficacy and accuracy of radiation therapy. We demonstrate in vivo magnetic resonance (MR), computed tomography (CT) contrast enhancement, and tumor suppression with prolonged survival in a non-small cell lung carcinoma model during clinical radiation therapy. Histological studies show minimal off-target toxicities due to the nanoparticles or radiation. By mimicking existing clinical workflows, we show that the bismuth-gadolinium nanoparticles are highly compatible with current CT-guided radiation therapy and emerging MR-guided approaches. This study reports the first in vivo proof-of-principle for image-guided radiation therapy with a new class of theranostic nanoparticles.


Asunto(s)
Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/radioterapia , Bismuto/uso terapéutico , Medios de Contraste/uso terapéutico , Gadolinio/uso terapéutico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Nanopartículas/uso terapéutico , Dióxido de Silicio/uso terapéutico , Células A549 , Adenocarcinoma del Pulmón , Animales , Bismuto/química , Medios de Contraste/química , Gadolinio/química , Humanos , Imagen por Resonancia Magnética , Ratones , Nanopartículas/química , Radioterapia Guiada por Imagen , Dióxido de Silicio/química , Nanomedicina Teranóstica , Tomografía Computarizada por Rayos X
6.
Nat Struct Mol Biol ; 25(7): 591-600, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29967538

RESUMEN

Dynamic protein interaction networks such as DNA double-strand break (DSB) signaling are modulated by post-translational modifications. The DNA repair factor 53BP1 is a rare example of a protein whose post-translational modification-binding function can be switched on and off. 53BP1 is recruited to DSBs by recognizing histone lysine methylation within chromatin, an activity directly inhibited by the 53BP1-binding protein TIRR. X-ray crystal structures of TIRR and a designer protein bound to 53BP1 now reveal a unique regulatory mechanism in which an intricate binding area centered on an essential TIRR arginine residue blocks the methylated-chromatin-binding surface of 53BP1. A 53BP1 separation-of-function mutation that abolishes TIRR-mediated regulation in cells renders 53BP1 hyperactive in response to DSBs, highlighting the key inhibitory function of TIRR. This 53BP1 inhibition is relieved by TIRR-interacting RNA molecules, providing proof-of-principle of RNA-triggered 53BP1 recruitment to DSBs.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Proteínas Portadoras/genética , Cristalografía por Rayos X , Roturas del ADN de Doble Cadena , Reparación del ADN , Histonas/química , Histonas/metabolismo , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Ingeniería de Proteínas , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Pirofosfatasas/química , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Proteínas de Unión al ARN/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA