Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643121

RESUMEN

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Asunto(s)
Insuficiencia Cardíaca , Selenoproteínas , Reductasa de Tiorredoxina-Disulfuro , Adulto , Anciano , Animales , Humanos , Ratas , Insuficiencia Cardíaca/metabolismo , Hipertrofia/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Selenoproteínas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
2.
Pharmacol Res ; 168: 105581, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33781873

RESUMEN

In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.


Asunto(s)
Encefalopatías/terapia , Encéfalo/efectos de los fármacos , COVID-19/terapia , Cardiopatías/terapia , Corazón/efectos de los fármacos , Corticoesteroides/administración & dosificación , Antiinflamatorios/administración & dosificación , Antivirales/administración & dosificación , Encéfalo/inmunología , Encéfalo/metabolismo , Encefalopatías/inmunología , Encefalopatías/metabolismo , COVID-19/inmunología , COVID-19/metabolismo , Cuidados Críticos/métodos , Enfermedad Crítica/terapia , Suplementos Dietéticos , Alimentos Funcionales , Cardiopatías/inmunología , Cardiopatías/metabolismo , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Microvasos/efectos de los fármacos , Microvasos/inmunología , Microvasos/metabolismo , Insuficiencia Multiorgánica/inmunología , Insuficiencia Multiorgánica/metabolismo , Insuficiencia Multiorgánica/terapia , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo
3.
FASEB J ; 33(6): 7734-7747, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30973759

RESUMEN

The clinical use of doxorubicin (Doxo), a widely used anticancer chemotherapeutic drug, is limited by dose-dependent cardiotoxicity. We have investigated whether chromogranin A (CgA), a cardioregulatory protein released in the blood by the neuroendocrine system and by the heart itself, may contribute to regulation of the cardiotoxic and antitumor activities of Doxo. The effects of a physiologic dose of full-length recombinant CgA on Doxo-induced cardiotoxicity and antitumor activity were investigated in rats using in vivo and ex vivo models and in murine models of melanoma, fibrosarcoma, lymphoma, and lung cancer, respectively. The effect of Doxo on circulating levels of CgA was also investigated. In vivo and ex vivo mechanistic studies showed that CgA can prevent Doxo-induced heart inflammation, oxidative stress, apoptosis, fibrosis, and ischemic injury. On the other hand, CgA did not impair the anticancer activity of Doxo in all the murine models investigated. Furthermore, we observed that Doxo can reduce the intracardiac expression and release of CgA in the blood (i.e., an important cardioprotective agent). These findings suggest that administration of low-dose CgA to patients with low levels of endogenous CgA might represent a novel approach to prevent Doxo-induced adverse events without impairing antitumor effects.-Rocca, C., Scavello, F., Colombo, B., Gasparri, A. M., Dallatomasina, A., Granieri, M. C., Amelio, D., Pasqua, T., Cerra, M. C., Tota, B., Corti, A., Angelone, T. Physiological levels of chromogranin A prevent doxorubicin-induced cardiotoxicity without impairing its anticancer activity.


Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Cromogranina A/metabolismo , Doxorrubicina/efectos adversos , Corazón/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Wistar
4.
Pharmacol Res ; 156: 104766, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32201244

RESUMEN

Since the discovery of Nesfatin-1 in 2006, intensive research was finalized to further and deeper investigate the precise physiological functions of the peptide at both central and peripheral levels, rapidly enriching the knowledge regarding this intriguing molecule. Nesfatin-1 is a hypothalamic peptide generated via the post-translational processing of its precursor Nucleobindin 2, a protein supposed to play a role in many biological processes thanks to its ability to bind calcium and to interact with different intracellular proteins. Nesfatin-1 is mainly known for its anorexic properties, but it also controls water intake and glucose homeostasis. Recent experimental evidences describe the peptide as a possible direct/indirect orchestrator of central and peripheral cardiovascular control. A specific Nesfatin-1 receptor still remains to be identified although numerous studies suggest that the peptide activates extra- and intracellular regulatory pathways by involving several putative binding sites. The present paper was designed to systematically review the latest findings about Nesfatin-1, focusing on its cardiovascular regulatory properties under normal and physiopathological conditions. The hope is to provide the conceptual basis to consider Nesfatin-1 not only as a pleiotropic neuroendocrine molecule, but also as a homeostatic modulator of the cardiovascular function and with a crucial role in cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Nucleobindinas/metabolismo , Animales , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/fisiopatología , Hemodinámica , Humanos , Pronóstico , Transducción de Señal , Investigación Biomédica Traslacional
5.
Cell Mol Life Sci ; 76(20): 3969-3985, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31218451

RESUMEN

Cardiovascular diseases represent one of the most important health problems of developed countries. One of the main actors involved in the onset and development of cardiovascular diseases is the increased production of reactive oxygen species that, through lipid peroxidation, protein oxidation and DNA damage, induce oxidative stress and cell death. Basic and clinical research are ongoing to better understand the endogenous antioxidant mechanisms that counteract oxidative stress, which may allow to identify a possible therapeutic targeting/application in the field of stress-dependent cardiovascular pathologies. In this context, increasing attention is paid to the glutathione/glutathione-peroxidase and to the thioredoxin/thioredoxin-reductase systems, among the most potent endogenous antioxidative systems. These key enzymes, belonging to the selenoprotein family, have a well-established function in the regulation of the oxidative cell balance. The aim of the present review was to highlight the role of selenoproteins in cardiovascular diseases, introducing the emerging cardioprotective role of endoplasmic reticulum-resident members and in particular one of them, namely selenoprotein T or SELENOT. Accumulating evidence indicates that the dysfunction of different selenoproteins is involved in the susceptibility to oxidative stress and its associated cardiovascular alterations, such as congestive heart failure, coronary diseases, impaired cardiac structure and function. Some of them are under investigation as useful pathological biomarkers. In addition, SELENOT exhibited intriguing cardioprotective effects by reducing the cardiac ischemic damage, in terms of infarct size and performance. In conclusion, selenoproteins could represent valuable targets to treat and diagnose cardiovascular diseases secondary to oxidative stress, opening a new avenue in the field of related therapeutic strategies.


Asunto(s)
Cardiotónicos/uso terapéutico , Enfermedades Cardiovasculares/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Péptidos/uso terapéutico , Selenocisteína/metabolismo , Selenoproteínas/genética , Animales , Antioxidantes/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/terapia , Regulación de la Expresión Génica , Glutatión Peroxidasa/metabolismo , Humanos , Terapia Molecular Dirigida/métodos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Selenoproteínas/agonistas , Selenoproteínas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
6.
Cell Tissue Res ; 376(1): 51-70, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30467710

RESUMEN

We have previously shown that the chromogranin A (CgA)-derived peptide catestatin (CST: hCgA352-372) inhibits nicotine-induced secretion of catecholamines from the adrenal medulla and chromaffin cells. In the present study, we seek to determine whether CST regulates dense core (DC) vesicle (DCV) quanta (catecholamine and chromogranin/secretogranin proteins) during acute (0.5-h treatment) or chronic (24-h treatment) cholinergic (nicotine) or peptidergic (PACAP, pituitary adenylyl cyclase activating polypeptide) stimulation of PC12 cells. In acute experiments, we found that both nicotine (60 µM) and PACAP (0.1 µM) decreased intracellular norepinephrine (NE) content and increased 3H-NE secretion, with both effects markedly inhibited by co-treatment with CST (2 µM). In chronic experiments, we found that nicotine and PACAP both reduced DCV and DC diameters and that this effect was likewise prevented by CST. Nicotine or CST alone increased expression of CgA protein and together elicited an additional increase in CgA protein, implying that nicotine and CST utilize separate signaling pathways to activate CgA expression. In contrast, PACAP increased expression of CgB and SgII proteins, with a further potentiation by CST. CST augmented the expression of tyrosine hydroxylase (TH) but did not increase intracellular NE levels, presumably due to its inability to cause post-translational activation of TH through serine phosphorylation. Co-treatment of CST with nicotine or PACAP increased quantal size, plausibly due to increased synthesis of CgA, CgB and SgII by CST. We conclude that CST regulates DCV quanta by acutely inhibiting catecholamine secretion and chronically increasing expression of CgA after nicotinic stimulation and CgB and SgII after PACAPergic stimulation.


Asunto(s)
Catecolaminas/metabolismo , Cromogranina A/fisiología , Cromograninas/metabolismo , Nicotina/farmacología , Fragmentos de Péptidos/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Animales , Cromogranina A/farmacología , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Humanos , Norepinefrina/metabolismo , Células PC12 , Fragmentos de Péptidos/farmacología , Ratas , Proteínas de Secreción de la Vesícula Seminal/metabolismo , Transducción de Señal/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
7.
J Cell Physiol ; 232(7): 1640-1649, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27607345

RESUMEN

The use of Doxorubicin (Dox), a frontline drug for many cancers, is often complicated by dose-limiting cardiotoxicity in approximately 20% of patients. The G-protein estrogen receptor GPER/GPR30 mediates estrogen action as the cardioprotection under certain stressful conditions. For instance, GPER activation by the selective agonist G-1 reduced myocardial inflammation, improved immunosuppression, triggered pro-survival signaling cascades, improved myocardial mechanical performance, and reduced infarct size after ischemia/reperfusion (I/R) injury. Hence, we evaluated whether ligand-activated GPER may exert cardioprotection in male rats chronically treated with Dox. 1 week of G-1 (50 µg/kg/day) intraperitoneal administration mitigated Dox (3 mg/kg/day) adverse effects, as revealed by reduced TNF-α, IL-1ß, LDH, and ROS levels. Western blotting analysis of cardiac homogenates indicated that G-1 prevents the increase in p-c-jun, BAX, CTGF, iNOS, and COX2 expression induced by Dox. Moreover, the activation of GPER rescued the inhibitory action elicited by Dox on the expression of BCL2, pERK, and pAKT. TUNEL assay indicated that GPER activation may also attenuate the cardiomyocyte apoptosis upon Dox exposure. Using ex vivo Langendorff perfused heart technique, we also found an increased systolic recovery and a reduction of both infarct size and LDH levels in rats treated with G-1 in combination with Dox respect to animals treated with Dox alone. Accordingly, the beneficial effects induced by G-1 were abrogated in the presence of the GPER selective antagonist G15. These data suggest that GPER activation mitigates Dox-induced cardiotoxicity, thus proposing GPER as a novel pharmacological target to limit the detrimental cardiac effects of Dox treatment. J. Cell. Physiol. 232: 1640-1649, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Cardiotónicos/uso terapéutico , Cardiotoxicidad/tratamiento farmacológico , Doxorrubicina/efectos adversos , Quinolinas/uso terapéutico , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Animales , Biomarcadores/metabolismo , Presión Sanguínea/efectos de los fármacos , Cardiotónicos/farmacología , Cardiotoxicidad/sangre , Cardiotoxicidad/patología , Cardiotoxicidad/fisiopatología , Diástole/efectos de los fármacos , Pruebas de Función Cardíaca/efectos de los fármacos , Humanos , Inflamación/patología , Interleucina-1beta/sangre , L-Lactato Deshidrogenasa/sangre , Ligandos , Masculino , Isquemia Miocárdica/sangre , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Quinolinas/farmacología , Ratas Wistar , Especies Reactivas de Oxígeno/sangre , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Función Ventricular/efectos de los fármacos
8.
Cell Tissue Res ; 363(3): 693-712, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26572539

RESUMEN

Chromogranin A (CgA) is a prohormone and granulogenic factor in neuroendocrine tissues with a regulated secretory pathway. The impact of CgA depletion on secretory granule formation has been previously demonstrated in cell culture. However, studies linking the structural effects of CgA deficiency with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not previously been reported. Adrenomedullary content of the secreted adrenal catecholamines norepinephrine (NE) and epinephrine (EPI) was decreased 30-40 % in Chga-KO mice. Quantification of NE and EPI-storing dense core (DC) vesicles (DCV) revealed decreased DCV numbers in chromaffin cells in Chga-KO mice. For both cell types, the DCV diameter in Chga-KO mice was less (100-200 nm) than in WT mice (200-350 nm). The volume density of the vesicle and vesicle number was also lower in Chga-KO mice. Chga-KO mice showed an ~47 % increase in DCV/DC ratio, implying vesicle swelling due to increased osmotically active free catecholamines. Upon challenge with 2 U/kg insulin, there was a diminution in adrenomedullary EPI, no change in NE and a very large increase in the EPI and NE precursor dopamine (DA), consistent with increased catecholamine biosynthesis during prolonged secretion. We found dilated mitochondrial cristae, endoplasmic reticulum and Golgi complex, as well as increased synaptic mitochondria, synaptic vesicles and glycogen granules in Chga-KO mice compared to WT mice, suggesting that decreased granulogenesis and catecholamine storage in CgA-deficient mouse adrenal medulla is compensated by increased VMAT-dependent catecholamine update into storage vesicles, at the expense of enhanced energy expenditure by the chromaffin cell.


Asunto(s)
Catecolaminas/metabolismo , Gránulos Cromafines/metabolismo , Cromogranina A/deficiencia , Metabolismo Energético , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/metabolismo , Animales , Western Blotting , Gránulos Cromafines/efectos de los fármacos , Gránulos Cromafines/ultraestructura , Cromogranina A/metabolismo , Dopamina/metabolismo , Endocitosis/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Metabolismo Energético/efectos de los fármacos , Epinefrina/metabolismo , Exocitosis/efectos de los fármacos , Glucosa/metabolismo , Glucógeno/metabolismo , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Humanos , Insulina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Norepinefrina/metabolismo , Nervios Esplácnicos/efectos de los fármacos , Nervios Esplácnicos/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo
9.
J Cell Mol Med ; 19(7): 1492-503, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25904190

RESUMEN

Heat shock proteins (HSPs), highly conserved in all organisms, act as molecular chaperones activated by several stresses. The HSP70 class of stress-induced proteins is the most studied subtype in cardiovascular and inflammatory disease. Because of the high similarity between plant and mammalian HSP70, the aim of this work was to evaluate whether recombinant HSP70 of plant origin (r-AtHSP70) was able to protect rat cardiac and hepatic function under ischemic and sepsis conditions. We demonstrated for the first time that, in ex vivo isolated and perfused rat heart, exogenous r-AtHSP70 exerted direct negative inotropic and lusitropic effects via Akt/endothelial nitric oxide synthase pathway, induced post-conditioning cardioprotection via Reperfusion Injury Salvage Kinase and Survivor Activating Factor Enhancement pathways, and did not cause hepatic damage. In vivo administration of r-AtHSP70 protected both heart and liver against lipopolysaccharide-dependent sepsis, as revealed by the reduced plasma levels of interleukin-1ß, tumour necrosis factor alpha, aspartate aminotransferase and alanine aminotransferase. These results suggest exogenous r-AtHSP70 as a molecular modulator able to protect myocardial function and to prevent cardiac and liver dysfunctions during inflammatory conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Hígado/metabolismo , Isquemia Miocárdica/mortalidad , Miocardio/metabolismo , Proteínas Recombinantes/metabolismo , Sepsis/prevención & control , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Lipopolisacáridos/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Datos de Secuencia Molecular , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Miocardio/patología , Ratas Wistar , Sepsis/complicaciones , Sepsis/patología , Sepsis/fisiopatología , Transducción de Señal/efectos de los fármacos , Sístole/efectos de los fármacos
10.
Am J Physiol Regul Integr Comp Physiol ; 305(4): R443-51, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23785074

RESUMEN

Hydrogen sulfide (H2S) has recently emerged as an important mediator of mammalian cardiovascular homeostasis. In nonmammalian vertebrates, little is known about the cardiac effects of H2S. This study aimed to evaluate, in the avascular heart of the frog, Rana esculenta, whether and to what extent H2S affects the cardiac performance, and what is the mechanism of action responsible for the observed effects. Results were analyzed in relation to those obtained in the rat heart, used as the mammalian model. Isolated and perfused (working and Langendorff) hearts, Western blot analysis, and modified biotin switch (S-sulfhydration) assay were used. In the frog heart, NaHS (used as H2S donor, 10⁻¹²/10⁻7 M) dose-dependently decreased inotropism. This effect was reduced by glibenclamide (KATP channels blocker), NG-monomethyl-L-arginine (NOS inhibitor), 1H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (guanylyl cyclase inhibitor), KT5823 (PKG inhibitor), and it was blocked by Akt1/2 (Akt inhibitor) and by detergent Triton X-100. In the rat, in addition to the classic negative inotropic effect, NaHS (10⁻¹²/10⁻7 M) exhibited negative lusitropism. In both frog and rat hearts, NaHS treatment induced Akt and eNOS phosphorylation and an increased cardiac protein S-sulfhydration that, in the rat heart, includes phospholamban. Our data suggest that H2S represents a phylogenetically conserved cardioactive molecule. Results obtained on the rat heart extend the role of H2S also to cardiac relaxation. H2S effects involve KATP channels, the Akt/NOS-cGMP/PKG pathway, and S-sulfhydration of cardiac proteins.


Asunto(s)
Proteínas Anfibias/metabolismo , Proteínas de Unión al Calcio/metabolismo , Corazón/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Miocardio/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfuros/farmacología , Animales , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Detergentes/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Femenino , Guanilato Ciclasa/antagonistas & inhibidores , Guanilato Ciclasa/metabolismo , Sulfuro de Hidrógeno/metabolismo , Canales KATP/efectos de los fármacos , Canales KATP/metabolismo , Masculino , Contracción Miocárdica/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Rana esculenta , Ratas , Ratas Wistar , Sulfuros/metabolismo , Factores de Tiempo
11.
FASEB J ; 26(7): 2888-98, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22459152

RESUMEN

Three forms of serpinin peptides, serpinin (Ala26Leu), pyroglutaminated (pGlu)-serpinin (pGlu23Leu), and serpinin-Arg-Arg-Gly (Ala29Gly), are derived from cleavage at pairs of basic residues in the highly conserved C terminus of chromogranin A (CgA). Serpinin induces PN-1 expression in neuroendocrine cells to up-regulate granule biogenesis via a cAMP-protein kinase A-Sp1 pathway, while pGlu-serpinin inhibits cell death. The aim of this study was to test the hypothesis that serpinin peptides are produced in the heart and act as novel ß-adrenergic-like cardiac modulators. We detected serpinin peptides in the rat heart by HPLC and ELISA methods. The peptides included predominantly Ala29Gly and pGlu-serpinin and a small amount of serpinin. Using the Langendorff perfused rat heart to evaluate the hemodynamic changes, we found that serpinin and pGlu-serpinin exert dose-dependent positive inotropic and lusitropic effects at 11-165 nM, within the first 5 min after administration. The pGlu-serpinin-induced contractility is more potent than that of serpinin, starting from 1 nM. Using the isolated rat papillary muscle preparation to measure contractility in terms of tension development and muscle length, we further corroborated the pGlu-serpinin-induced positive inotropism. Ala29Gly was unable to affect myocardial performance. Both pGlu-serpinin and serpinin act through a ß1-adrenergic receptor/adenylate cyclase/cAMP/PKA pathway, indicating that, contrary to the ß-blocking profile of the other CgA-derived cardiosuppressive peptides, vasostatin-1 and catestatin, these two C-terminal peptides act as ß-adrenergic-like agonists. In cardiac tissue extracts, pGlu-serpinin increased intracellular cAMP levels and phosphorylation of phospholamban (PLN)Ser16, ERK1/2, and GSK-3ß. Serpinin and pGlu-serpinin peptides emerge as novel ß-adrenergic inotropic and lusitropic modulators, suggesting that CgA and the other derived cardioactive peptides can play a key role in how the myocardium orchestrates its complex response to sympathochromaffin stimulation.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 1/química , Agonistas de Receptores Adrenérgicos beta 1/farmacología , Cardiotónicos/química , Cardiotónicos/farmacología , Cromogranina A/química , Cromogranina A/fisiología , Corazón/efectos de los fármacos , Corazón/fisiología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Cromogranina A/genética , Cromogranina A/farmacología , Técnicas In Vitro , Masculino , Datos de Secuencia Molecular , Contracción Miocárdica/efectos de los fármacos , Miocardio/química , Músculos Papilares/efectos de los fármacos , Músculos Papilares/fisiología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/farmacología , Ratas , Ratas Wistar
12.
Cells ; 12(7)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-37048116

RESUMEN

Cardiac lipotoxicity is an important contributor to cardiovascular complications during obesity. Given the fundamental role of the endoplasmic reticulum (ER)-resident Selenoprotein T (SELENOT) for cardiomyocyte differentiation and protection and for the regulation of glucose metabolism, we took advantage of a small peptide (PSELT), derived from the SELENOT redox-active motif, to uncover the mechanisms through which PSELT could protect cardiomyocytes against lipotoxicity. To this aim, we modeled cardiac lipotoxicity by exposing H9c2 cardiomyocytes to palmitate (PA). The results showed that PSELT counteracted PA-induced cell death, lactate dehydrogenase release, and the accumulation of intracellular lipid droplets, while an inert form of the peptide (I-PSELT) lacking selenocysteine was not active against PA-induced cardiomyocyte death. Mechanistically, PSELT counteracted PA-induced cytosolic and mitochondrial oxidative stress and rescued SELENOT expression that was downregulated by PA through FAT/CD36 (cluster of differentiation 36/fatty acid translocase), the main transporter of fatty acids in the heart. Immunofluorescence analysis indicated that PSELT also relieved the PA-dependent increase in CD36 expression, while in SELENOT-deficient cardiomyocytes, PA exacerbated cell death, which was not mitigated by exogenous PSELT. On the other hand, PSELT improved mitochondrial respiration during PA treatment and regulated mitochondrial biogenesis and dynamics, preventing the PA-provoked decrease in PGC1-α and increase in DRP-1 and OPA-1. These findings were corroborated by transmission electron microscopy (TEM), revealing that PSELT improved the cardiomyocyte and mitochondrial ultrastructures and restored the ER network. Spectroscopic characterization indicated that PSELT significantly attenuated infrared spectral-related macromolecular changes (i.e., content of lipids, proteins, nucleic acids, and carbohydrates) and also prevented the decrease in membrane fluidity induced by PA. Our findings further delineate the biological significance of SELENOT in cardiomyocytes and indicate the potential of its mimetic PSELT as a protective agent for counteracting cardiac lipotoxicity.


Asunto(s)
Miocitos Cardíacos , Palmitatos , Palmitatos/toxicidad , Palmitatos/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 302(2): H431-42, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22058158

RESUMEN

The chromogranin A (CHGA)-derived peptide catestatin (CST: hCHGA(352-372)) is a noncompetitive catecholamine-release inhibitor that exerts vasodilator, antihypertensive, and cardiosuppressive actions. We have shown that CST directly influences the basal performance of the vertebrate heart where CST dose dependently induced a nitric oxide-cGMP-dependent cardiosuppression and counteracted the effects of adrenergic stimulation through a noncompetitive antagonism. Here, we sought to determine the specific intracardiac signaling activated by CST in the rat heart. Physiological analyses performed on isolated, Langendorff-perfused cardiac preparations revealed that CST-induced negative inotropism and lusitropism involve ß(2)/ß(3)-adrenergic receptors (ß(2)/ß(3)-AR), showing a higher affinity for ß(2)-AR. Interaction with ß(2)-AR activated phosphatidylinositol 3-kinase/endothelial nitric oxide synthase (eNOS), increased cGMP levels, and induced activation of phosphodiesterases type 2 (PDE2), which was found to be involved in the antiadrenergic action of CST as evidenced by the decreased cAMP levels. CST-dependent negative cardiomodulation was abolished by functional denudation of the endothelium with Triton. CST also increased the eNOS expression in cardiac tissue and human umbilical vein endothelial cells. cells, confirming the involvement of the vascular endothelium. In ventricular extracts, CST increased S-nitrosylation of both phospholamban and ß-arrestin, suggesting an additional mechanism for intracellular calcium modulation and ß-adrenergic responsiveness. We conclude that PDE2 and S-nitrosylation play crucial roles in the CST regulation of cardiac function. Our results are of importance in relation to the putative application of CST as a cardioprotective agent against stress, including excessive sympathochromaffin overactivation.


Asunto(s)
Antihipertensivos/farmacología , Fármacos Cardiovasculares/farmacología , Cromogranina A/farmacología , Exonucleasas/metabolismo , Corazón/efectos de los fármacos , Miocardio/metabolismo , Óxido Nítrico/metabolismo , Fragmentos de Péptidos/farmacología , Transducción de Señal/fisiología , Animales , Arrestinas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas , Ratas , Receptores Adrenérgicos beta/metabolismo , beta-Arrestinas
14.
Basic Res Cardiol ; 107(4): 272, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22699364

RESUMEN

We recently reported that heart expresses functional receptors for the anorexigenic glucagon-like peptide (GLP)-2. Activation of these cardiac receptors affected basal heart performance through extracellular regulated kinase (ERK1/2) activation. Since ERK1/2 is considered one of the prosurvival kinases of postconditioning cardioprotective pathways, we hypothesized that GLP-2 directly protects the heart against ischemia/reperfusion (I/R) injury via prosurvival kinases. Wistar rat hearts were retrogradely perfused on a Langendorff perfusion apparatus. After 40-min stabilization, hearts underwent 30-min global ischemia and 120-min reperfusion (I/R group). In GLP-2 group, the hearts received 20-min GLP-2 (10(-7) M) infusion at the beginning of the 120-min reperfusion. Perfusion pressure and left ventricular pressure (LVP) were monitored. Infarct size was evaluated by nitroblue-tetrazolium staining. Compared with the I/R group, GLP-2-treated hearts showed a significant reduction of infarct size and of postischemic diastolic LVP (index of contracture), together with a sharp improvement of developed LVP recovery (index of contractility). The protective effects were abolished by co-infusion with phosphatidylinositol 3-kinase inhibitor, Wortmannin (WT), the ERK1/2 inhibitor, PD98059, or the mitochondrial K(ATP) channel blocker, 5-hydroxydecanoate. GLP-2 effects were accompanied by increased phosphorylation of protein kinase B (PKB/Akt), ERK1/2 and glycogen synthase kinase (GSK3ß). After 7-min reperfusion, WT blocked Akt and GSK3ß phosphorylation. After 30-min reperfusion, WT inhibited phosphorylation of all kinases. In conclusion, the data suggest that GLP-2, given in early reperfusion, as postconditioning, protects against myocardial I/R injury, limiting infarct size, and improving post-ischemic mechanical recovery. It seems that the GLP-2-protection of rat heart involves multiple prosurvival kinases and mitochondrial K(ATP) channels.


Asunto(s)
Péptido 2 Similar al Glucagón/farmacología , Poscondicionamiento Isquémico/métodos , Sistema de Señalización de MAP Quinasas/fisiología , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/patología , Canales de Potasio/metabolismo , Animales , Western Blotting , Inhibidores Enzimáticos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Ratas , Ratas Wistar
15.
Nitric Oxide ; 27(1): 40-9, 2012 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-22555002

RESUMEN

The length-active tension relation or heterometric regulation (Frank-Starling mechanism) is modulated by nitric oxide (NO) which, released in pulsatile fashion from the beating heart, improves myocardial relaxation and diastolic distensibility. The NO signaling is also implicated in the homeometric regulation exerted by extrinsic factors such as autonomic nervous system, endocrine and humoral agents. In the in vitro working frog heart, the Chromogranin A (CGA)-derived peptide, Catestatin (CTS; bovine CGA344-364), exerts a direct cardio-suppressive action through a NOS-NO-cGMP-mediated mechanism which requires the functional integrity of the endocardial endothelium (EE) and its endothelin-1 B type (ETB) receptor. However, functional interplay between NO and CTS and their role in the Frank-Starling response of the frog heart are lacking. Here we show that CTS improves the sensitivity to preload increases similar to that exerted by NO. This effect is abolished by inhibition of NO synthase (L-NAME), guanylate cyclase (ODQ), protein kinase G (KT5823), PI3K (Wortmannin), as well as by the functional damage of EE (Triton X-100) suggesting that CTS operates through an EE-dependent NO release. On the whole, the use of the avascular frog heart revealed the EE as major sensor-transducer interface between the physical (volume load) and chemical (CTS) stimuli, NO functioning as a connector between heterometric and homeometric regulation.


Asunto(s)
Cromogranina A/metabolismo , Corazón/efectos de los fármacos , Miocardio/metabolismo , Óxido Nítrico/metabolismo , Fragmentos de Péptidos/metabolismo , Volumen Sistólico/efectos de los fármacos , Análisis de Varianza , Animales , Western Blotting , Calcio/metabolismo , Endocardio/metabolismo , Femenino , Masculino , Donantes de Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ranidae
16.
Vascul Pharmacol ; 145: 107003, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35680059

RESUMEN

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disorder that associates with nucleotide sequence variants in genes encoding sarcomere related proteins, and is recognized as the most common heritable cardiac diseases. Clinically, HCM can be extremely variable and this makes the diagnosis difficult until the development of serious or fatal events. Nevertheless, the main hallmark of HCM is represented by left ventricle hypertrophy that can be occasionally associated to cardiac arrhythmias, chest pain, diastolic dysfunction, obstruction of left ventricular outflow tract. The present review aims to focus on the complex interplay existing between the multifaceted non-genetic molecular mechanisms underlying HCM onset and progression, and the key pathophysiological role of abnormal coronary artery function. As the clinical course of HCM shows a mortality rate per year up to 6% the importance of innovative therapeutic strategies will be discussed, especially in regard to the use of potential endogenous coronary modulators to be enrolled as modifiers of HCM phenotype.


Asunto(s)
Cardiomiopatía Hipertrófica , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/genética , Corazón , Humanos , Hipertrofia Ventricular Izquierda , Fenotipo , Sarcómeros/genética , Sarcómeros/metabolismo
17.
Biomedicines ; 10(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35327322

RESUMEN

Mitochondria are key organelles for the maintenance of myocardial tissue homeostasis, playing a pivotal role in adenosine triphosphate (ATP) production, calcium signaling, redox homeostasis, and thermogenesis, as well as in the regulation of crucial pathways involved in cell survival. On this basis, it is not surprising that structural and functional impairments of mitochondria can lead to contractile dysfunction, and have been widely implicated in the onset of diverse cardiovascular diseases, including ischemic cardiomyopathy, heart failure, and stroke. Several studies support mitochondrial targets as major determinants of the cardiotoxic effects triggered by an increasing number of chemotherapeutic agents used for both solid and hematological tumors. Mitochondrial toxicity induced by such anticancer therapeutics is due to different mechanisms, generally altering the mitochondrial respiratory chain, energy production, and mitochondrial dynamics, or inducing mitochondrial oxidative/nitrative stress, eventually culminating in cell death. The present review summarizes key mitochondrial processes mediating the cardiotoxic effects of anti-neoplastic drugs, with a specific focus on anthracyclines (ANTs), receptor tyrosine kinase inhibitors (RTKIs) and proteasome inhibitors (PIs).

19.
J Clin Med ; 10(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673114

RESUMEN

Cardiac metabolism represents a crucial and essential connecting bridge between the healthy and diseased heart. The cardiac muscle, which may be considered an omnivore organ with regard to the energy substrate utilization, under physiological conditions mainly draws energy by fatty acids oxidation. Within cardiomyocytes and their mitochondria, through well-concerted enzymatic reactions, substrates converge on the production of ATP, the basic chemical energy that cardiac muscle converts into mechanical energy, i.e., contraction. When a perturbation of homeostasis occurs, such as an ischemic event, the heart is forced to switch its fatty acid-based metabolism to the carbohydrate utilization as a protective mechanism that allows the maintenance of its key role within the whole organism. Consequently, the flexibility of the cardiac metabolic networks deeply influences the ability of the heart to respond, by adapting to pathophysiological changes. The aim of the present review is to summarize the main metabolic changes detectable in the heart under acute and chronic cardiac pathologies, analyzing possible therapeutic targets to be used. On this basis, cardiometabolism can be described as a crucial mechanism in keeping the physiological structure and function of the heart; furthermore, it can be considered a promising goal for future pharmacological agents able to appropriately modulate the rate-limiting steps of heart metabolic pathways.

20.
Acta Physiol (Oxf) ; 231(4): e13570, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33073482

RESUMEN

AIM: Chromogranin A (CgA), a 439-residue long protein, is an important cardiovascular regulator and a precursor of various bioactive fragments. Under stressful/pathological conditions, CgA cleavage generates the CgA1-373 proangiogenic fragment. The present work investigated the possibility that human CgA1-373 influences the mammalian cardiac performance, evaluating the role of its C-terminal sequence. METHODS: Haemodynamic assessment was performed on an ex vivo Langendorff rat heart model, while mechanistic studies were performed using perfused hearts, H9c2 cardiomyocytes and in silico. RESULTS: On the ex vivo heart, CgA1-373 elicited direct dose-dependent negative inotropism and vasodilation, while CgA1-372 , a fragment lacking the C-terminal R373 residue, was ineffective. Antibodies against the PGPQLR373 C-terminal sequence abrogated the CgA1-373 -dependent cardiac and coronary modulation. Ex vivo studies showed that CgA1-373 -dependent effects were mediated by endothelium, neuropilin-1 (NRP1) receptor, Akt/NO/Erk1,2 pathways, nitric oxide (NO) production and S-nitrosylation. In vitro experiments on H9c2 cardiomyocytes indicated that CgA1-373 also induced eNOS activation directly on the cardiomyocyte component by NRP1 targeting and NO involvement and provided beneficial action against isoproterenol-induced hypertrophy, by reducing the increase in cell surface area and brain natriuretic peptide (BNP) release. Molecular docking and all-atom molecular dynamics simulations strongly supported the hypothesis that the C-terminal R373 residue of CgA1-373 directly interacts with NRP1. CONCLUSION: These results suggest that CgA1-373 is a new cardioregulatory hormone and that the removal of R373 represents a critical switch for turning "off" its cardioregulatory activity.


Asunto(s)
Neuropilina-1 , Fragmentos de Péptidos , Animales , Cromogranina A , Humanos , Simulación del Acoplamiento Molecular , Miocitos Cardíacos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA