Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Mol Life Sci ; 79(1): 62, 2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35001155

RESUMEN

Availability of iron is a key factor in the survival and multiplication of Mycobacterium tuberculosis (M.tb) within host macrophage phagosomes. Despite host cell iron regulatory machineries attempts to deny supply of this essential micronutrient, intraphagosomal M.tb continues to access extracellular iron. In the current study, we report that intracellular M.tb exploits mammalian secreted Glyceraldehyde 3-phosphate dehydrogenase (sGAPDH) for the delivery of host iron carrier proteins lactoferrin (Lf) and transferrin (Tf). Studying the trafficking of iron carriers in infected cells we observed that sGAPDH along with the iron carrier proteins are preferentially internalized into infected cells and trafficked to M.tb containing phagosomes where they are internalized by resident mycobacteria resulting in iron delivery. Collectively our findings provide a new mechanism of iron acquisition by M.tb involving the hijack of host sGAPDH. This may contribute to its successful pathogenesis and provide an option for targeted therapeutic intervention.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Hierro/metabolismo , Lactoferrina/metabolismo , Mycobacterium tuberculosis/metabolismo , Transferrina/metabolismo , Animales , Transporte Biológico/fisiología , Línea Celular Tumoral , Humanos , Células L , Ratones , Ratones Endogámicos C57BL , Fagosomas/metabolismo , Células THP-1 , Tuberculosis/patología
2.
Cell Microbiol ; 23(5): e13311, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33486886

RESUMEN

The spread of infection is directly determined by the ability of a pathogen to invade and infect host tissues. The process involves adherence due to host-pathogen interactions and traversal into deeper tissues. Mycobacterium tuberculosis (Mtb) primarily infects the lung but is unique in its ability to infect almost any other organ of the human host including immune privileged sites such as the central nervous system (CNS). The extreme invasiveness of this bacterium is not fully understood. In the current study, we report that cell surface Mtb glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a virulence factor by multiple mechanisms. Firstly, it serves as a dual receptor for both plasminogen (Plg) and plasmin (Plm). CRISPRi-mediated silencing of this essential enzyme confirmed its role in the recruitment of Plg/Plm. Our studies further demonstrate that soluble GAPDH can re-associate on Mtb bacilli to promote plasmin(ogen) recruitment. The direct association of plasmin(ogen) via cell surface GAPDH or by the re-association of soluble GAPDH enhanced bacterial adherence to and traversal across lung epithelial cells. Furthermore, the association of GAPDH with host extracellular matrix (ECM) proteins coupled with its ability to recruit plasmin(ogen) may endow cells with the ability of directed proteolytic activity vital for tissue invasion.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Fibrinolisina/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/patogenicidad , Plasminógeno/metabolismo , Factores de Virulencia/metabolismo , Células A549 , Adhesinas Bacterianas/genética , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Humanos , Unión Proteica , Virulencia , Factores de Virulencia/genética
3.
FASEB J ; 33(4): 5626-5640, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30640524

RESUMEN

During physiologic stresses, like micronutrient starvation, infection, and cancer, the cytosolic moonlighting protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is trafficked to the plasma membrane (PM) and extracellular milieu (ECM). Our work demonstrates that GAPDH mobilized to the PM, and the ECM does not utilize the classic endoplasmic reticulum-Golgi route of secretion; instead, it is first selectively translocated into early and late endosomes from the cytosol via microautophagy. GAPDH recruited to this common entry point is subsequently delivered into multivesicular bodies, leading to its membrane trafficking through secretion via exosomes and secretory lysosomes. We present evidence that both pathways of GAPDH membrane trafficking are up-regulated upon iron starvation, potentially by mobilization of intracellular calcium. These pathways also play a role in clearance of misfolded intracellular polypeptide aggregates. Our findings suggest that cells build in redundancy for vital cellular pathways to maintain micronutrient homeostasis and prevent buildup of toxic intracellular misfolded protein refuse.-Chauhan, A. S., Kumar, M., Chaudhary, S., Dhiman, A., Patidar, A., Jakhar, P., Jaswal, P., Sharma, K., Sheokand, N., Malhotra, H., Raje, C. I., Raje. M. Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways.


Asunto(s)
Endosomas/metabolismo , Microautofagia/fisiología , Transporte de Proteínas/fisiología , Vías Secretoras/fisiología , Animales , Autofagia/fisiología , Línea Celular , Membrana Celular/metabolismo , Movimiento Celular/fisiología , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Exosomas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Ratones , Cuerpos Multivesiculares/metabolismo , Regulación hacia Arriba/fisiología
4.
Cell Physiol Biochem ; 52(3): 517-531, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30897319

RESUMEN

BACKGROUND/AIMS: Hypoxia triggers a rapid increase in iron demand to meet the requirements of enhanced erythropoiesis. The mobilization of iron stores from macrophage to plasma as holo-transferrin (Tf) from where it is accessible to erythroid precursor cells impacts iron homeostasis. Despite the immediate need for enhanced iron uptake by bone marrow cells, numerous studies have shown that transferrin receptor levels do not rise until more than 24 hours after the onset of hypoxia, suggesting the existence of heretofore unknown rapid response cellular machinery for iron acquisition in the early stages of cellular hypoxia. METHODS: We performed flow cytometry to measure cell surface levels of TfR1, GAPDH, and Tf binding after hypoxia treatment. We utilized FRET analysis and co-immunoprecipitation methods to establish the interaction between Tf and GAPDH. RESULTS: In the current study, we demonstrated that hypoxia induces K562 cells to translocate the cytosolic moonlighting protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) onto cell surfaces and into the extracellular milieu to acquire transferrin-bound iron, even while levels of the classical transferrin receptor TfR1 (CD71) remain suppressed. GAPDH knockdown confirmed this protein's role in transferrin acquisition. Interestingly, macrophages did not show enhanced levels of extracellular GAPDH under hypoxia. CONCLUSION: Our results suggest the role of GAPDH-mediated Tf uptake as a rapid response mechanism by which cells acquire iron during the early stages of hypoxia. This is a tissue-specific phenomenon for the distinct requirements of cells that are consumers of iron versus cells that play a role in iron storage and recycling. This rapid deployment of an abundantly available multipurpose molecule allows hypoxic cells to internalize more Tf and maintain enhanced iron supplies in the early stages of hypoxia before specialized receptors can be synthesized and deployed to the cell membrane.


Asunto(s)
Hipoxia de la Célula , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Hierro/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Humanos , Células K562 , Macrófagos/citología , Macrófagos/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Transferrina/metabolismo
5.
J Antimicrob Chemother ; 74(4): 912-920, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30689890

RESUMEN

BACKGROUND: The emergence of drug-resistant bacteria is a major hurdle for effective treatment of infections caused by Mycobacterium tuberculosis and ESKAPE pathogens. In comparison with conventional drug discovery, drug repurposing offers an effective yet rapid approach to identifying novel antibiotics. METHODS: Ethyl bromopyruvate was evaluated for its ability to inhibit M. tuberculosis and ESKAPE pathogens using growth inhibition assays. The selectivity index of ethyl bromopyruvate was determined, followed by time-kill kinetics against M. tuberculosis and Staphylococcus aureus. We first tested its ability to synergize with approved drugs and then tested its ability to decimate bacterial biofilm. Intracellular killing of M. tuberculosis was determined and in vivo potential was determined in a neutropenic murine model of S. aureus infection. RESULTS: We identified ethyl bromopyruvate as an equipotent broad-spectrum antibacterial agent targeting drug-susceptible and -resistant M. tuberculosis and ESKAPE pathogens. Ethyl bromopyruvate exhibited concentration-dependent bactericidal activity. In M. tuberculosis, ethyl bromopyruvate inhibited GAPDH with a concomitant reduction in ATP levels and transferrin-mediated iron uptake. Apart from GAPDH, this compound inhibited pyruvate kinase, isocitrate lyase and malate synthase to varying extents. Ethyl bromopyruvate did not negatively interact with any drug and significantly reduced biofilm at a 64-fold lower concentration than vancomycin. When tested in an S. aureus neutropenic thigh infection model, ethyl bromopyruvate exhibited efficacy equal to that of vancomycin in reducing bacterial counts in thigh, and at 1/25th of the dosage. CONCLUSIONS: Ethyl bromopyruvate exhibits all the characteristics required to be positioned as a potential broad-spectrum antibacterial agent.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Viabilidad Microbiana/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Piruvatos/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Inhibidores Enzimáticos/administración & dosificación , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/antagonistas & inhibidores , Ratones Endogámicos BALB C , Piruvatos/administración & dosificación , Infecciones Estafilocócicas/tratamiento farmacológico , Transferrina/antagonistas & inhibidores , Resultado del Tratamiento
6.
J Cell Sci ; 129(4): 843-53, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26743084

RESUMEN

Iron (Fe), a vital micronutrient for all organisms, must be managed judiciously because both deficiency or excess can trigger severe pathology. Although cellular Fe import is well understood, its export is thought to be limited to transmembrane extrusion through ferroportin (also known as Slc40a1), the only known mammalian Fe exporter. Utilizing primary cells and cell lines (including those with no discernible expression of ferroportin on their surface), we demonstrate that upon Fe loading, the multifunctional enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is recruited to the cell surface, 'treadmills' apotransferrin in and out of the cell. Kinetic analysis utilizing labeled ligand, GAPDH-knockdown cells, (55)Fe-labeled cells and pharmacological inhibitors of endocytosis confirmed GAPDH-dependent apotransferrin internalization as a prerequisite for cellular Fe export. These studies define an unusual rapid recycling process of retroendocytosis for cellular Fe extrusion, a process mirroring receptor mediated internalization that has never before been considered for maintenance of cellular cationic homeostasis. Modulation of this unusual pathway could provide insights for management of Fe overload disorders.


Asunto(s)
Apoproteínas/metabolismo , Endocitosis , Hierro/metabolismo , Transferrina/metabolismo , Animales , Línea Celular , Ratones , Transporte de Proteínas
7.
FASEB J ; 31(6): 2638-2648, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28298336

RESUMEN

Prokaryotic pathogens establish infection in mammals by capturing the proteolytic enzyme plasminogen (Plg) onto their surface to digest host extracellular matrix (ECM). One of the bacterial surface Plg receptors is the multifunctional glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In a defensive response, the host mounts an inflammatory response, which involves infiltration of leukocytes to sites of inflammation. This requires macrophage exit from the blood and migration across basement membranes, a phenomenon dependent on proteolytic remodeling of the ECM utilizing Plg. The ability of Plg to facilitate inflammatory cell recruitment critically depends on receptors on the surface of phagocyte cells. Utilizing a combination of biochemical, cellular, knockdown, and in vivo approaches, we demonstrated that upon inflammation, macrophages recruit GAPDH onto their surface to carry out the same task of capturing Plg to digest ECM to aid rapid phagocyte migration and combat the invading pathogens. We propose that GAPDH is an ancient, evolutionarily conserved receptor that plays a key role in the Plg-dependent regulation of macrophage recruitment in the inflammatory response to microbial aggression, thus pitting prokaryotic GAPDH against mammalian GAPDH, with both involved in a conserved role of Plg activation on the surface of their respective cells, to conflicting ends.-Chauhan, A. S., Kumar, M., Chaudhary, S., Patidar, A., Dhiman, A., Sheokand, N., Malhotra, H., Raje, C. I., Raje, M. Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells.


Asunto(s)
Evolución Molecular , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Macrófagos/metabolismo , Plasminógeno/metabolismo , Animales , Línea Celular , Movimiento Celular , Regulación Enzimológica de la Expresión Génica/fisiología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Ratones , Receptores de Superficie Celular , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Regulación hacia Arriba
8.
Immunol Res ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347341

RESUMEN

Diabetes mellitus (DM) is a major risk factor for tuberculosis (TB), though the underlying mechanisms linking DM and TB remain ambiguous. Macrophages are a key player in the innate immune response and their phagocytic ability is enhanced in response to microbial infections. Upon infection or inflammation, they also repel invading pathogens by generating; reactive oxygen species (ROS), reactive nitrogen species (RNS), pro-inflammatory cytokines (IL-1ß and IL-6), and anti-inflammatory cytokines (IL-10). However, the robustness of these innate defensive capabilities of macrophages when exposed to hyperglycemia remains unclear. In our current work, we explored the production of these host defense molecules in response to challenge with Mycobacterium tuberculosis (Mtb) infection and lipopolysaccharide (LPS) stimulation. Utilizing peritoneal macrophages from high-fat diet + streptozotocin induced diabetic mice and hyperglycemic THP-1-derived macrophages as model systems; we found that LPS stimulation and Mtb infection were ineffective in stimulating the production of ROS, RNS, and pro-inflammatory cytokines in cells exposed to hyperglycemia. On the contrary, an increase in production of anti-inflammatory cytokines was observed. To confirm the mechanism of decreased anti-bacterial activity of the diabetic macrophage, we explored activation status of these compromised macrophages and found decreased surface expression of activation (TLR-4) and differentiation markers (CD11b and CD11c). We postulate that this could be the cause for higher susceptibility for Mtb infection among diabetic individuals.

9.
Plants (Basel) ; 12(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37571005

RESUMEN

Bread wheat (Triticum aestivum L.) is widely grown in sub-tropical and tropical areas and, as such, it is exposed to heatstress especially during the grain filling period (GFP). Global warming has further affected its production and productivity in these heat-stressed environments. We examined the effects of heatstress on 18 morpho-physiological and yield-related traits in 96 bread wheat accessions. Heat stress decreased crop growth and GFP, and consequently reduced morphological and yield-related traits in the delayed sown crop. A low heat susceptibility index and high yield stability were used for selecting tolerant accessions. Under heatstress, the days to 50% anthesis, flag-leaf area, chlorophyll content, normalized difference vegetation index (NDVI), thousand grain weight (TGW), harvest index and grain yield were significantly reduced both in tolerant and susceptible accessions. The reduction was severe in susceptible accessions (48.2% grain yield reduction in IC277741). The plant height, peduncle length and spike length showeda significant reduction in susceptible accessions, but a non-significant reduction in the tolerant accessions under the heatstress. The physiological traits like the canopy temperature depression (CTD), plant waxiness and leaf rolling were increased in tolerant accessions under heatstress. Scanning electron microscopy of matured wheat grains revealed ultrastructural changes in endosperm and aleurone cells due to heat stress. The reduction in size and density of large starch granules is the major cause of the yield and TGW decrease in the heat-stress-susceptible accessions. The most stable and high-yielding accessions, namely, IC566223, IC128454, IC335792, EC576707, IC535176, IC529207, IC446713 and IC416019 were identified as the climate-smart germplasm lines. We selected germplasm lines possessing desirable traits as potential parents for the development of bi-parent and multi-parent mapping populations.

10.
J Innate Immun ; 15(1): 581-598, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37080180

RESUMEN

Mycobacterium tuberculosis (M.tb), the major causative agent of tuberculosis, has evolved mechanisms to evade host defenses and persist within host cells. Host-directed therapies against infected cells are emerging as an effective option. Cationic host defense peptide LL-37 is known to internalize into cells and induce autophagy resulting in intracellular killing of M.tb. This peptide also regulates the immune system and interacts with the multifunctional protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inside macrophages. Our investigations revealed that GAPDH moonlights as a mononuclear cell surface receptor that internalizes LL-37. We confirmed that the surface levels of purinergic receptor 7, the receptor previously reported for this peptide, remained unaltered on M.tb infected macrophages. Upon infection or cellular activation with IFNγ, surface recruited GAPDH bound to and internalized LL-37 into endocytic compartments via a lipid raft-dependent process. We also discovered a role for GAPDH in LL-37-mediated autophagy induction and clearance of intracellular pathogens. In infected macrophages wherein GAPDH had been knocked down, we observed an inhibition of LL-37-mediated autophagy which was rescued by GAPDH overexpression. This process was dependent on intracellular calcium and p38 MAPK pathways. Our findings reveal a previously unknown process by which macrophages internalize an antimicrobial peptide via cell surface GAPDH and suggest a moonlighting role of GAPDH in regulating cellular phenotypic responses of LL-37 resulting in reduction of M.tb burden.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Macrófagos , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Mycobacterium tuberculosis/fisiología , Péptidos Catiónicos Antimicrobianos/metabolismo
11.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166202, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34144092

RESUMEN

Onset of protein aggregation reflects failure of the cellular folding machinery to keep aggregation-prone protein from misfolding and accumulating into a non-degradable state. FRET based analysis and biochemical data reveal that cytosolic prion (cyPrP) and httQ-103 interact with the multifunctional protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) leading to few detectable aggregates in GAPDH-over expressing cells.The preventive effect of GAPDH suggests that this abundant and long-lived cytoplasmic protein has an active role in the shielding and maintenance, in soluble form of proteins as heterogeneous as huntingtin and cyPrP.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Agregado de Proteínas/fisiología , Animales , Células COS , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Células HeLa , Humanos
12.
Cell Death Dis ; 12(10): 892, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593755

RESUMEN

Rapid clearance of apoptotic cells by phagocytes is crucial for organogenesis, tissue homeostasis, and resolution of inflammation. This process is initiated by surface exposure of various 'eat me' ligands. Though phosphatidylserine (PS) is the best recognized general recognition ligand till date, recent studies have shown that PS by itself is not sufficient for clearance of apoptotic cells. In this study, we have identified a specific pleioform of GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) that functions as an 'eat me' signal on apoptotic cell surface. This specific form of GAPDH which is exposed on surface of apoptotic cells was found to interact with CD14 present on plasma membrane of phagocytes leading to their engulfment. This is the first study demonstrating the novel interaction between multifunctional GAPDH and the phagocytic receptor CD14 resulting in apoptotic cell clearance (efferocytosis).


Asunto(s)
Apoptosis , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Línea Celular , Membrana Celular/metabolismo , Exocitosis , Humanos , Lisosomas/metabolismo , Fagocitos/metabolismo , Fagocitosis , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , Estrés Fisiológico
13.
Mol Neurobiol ; 58(11): 5790-5798, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34406601

RESUMEN

Protein aggregate accumulation is a pathological hallmark of several neurodegenerative disorders. Autophagy is critical for clearance of aggregate-prone proteins. In this study, we identify a novel role of the multifunctional glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in clearance of intracellular protein aggregates. Previously, it has been reported that though clearance of wild-type huntingtin protein is mediated by chaperone-mediated autophagy (CMA), however, degradation of mutant huntingtin (mHtt with numerous poly Q repeats) remains impaired by this route as mutant Htt binds with high affinity to Hsc70 and LAMP-2A. This delays delivery of misfolded protein to lysosomes and results in accumulation of intracellular aggregates which are degraded only by macroautophagy. Earlier investigations also suggest that mHtt causes inactivation of mTOR signaling, causing upregulation of autophagy. GAPDH had earlier been reported to interact with mHtt resulting in cellular toxicity. Utilizing a cell culture model of mHtt aggregates coupled with modulation of GAPDH expression, we analyzed the formation of intracellular aggregates and correlated this with autophagy induction. We observed that GAPDH knockdown cells transfected with N-terminal mutant huntingtin (103 poly Q residues) aggregate-prone protein exhibit diminished autophagy. GAPDH was found to regulate autophagy via the mTOR pathway. Significantly more and larger-sized huntingtin protein aggregates were observed in GAPDH knockdown cells compared to empty vector-transfected control cells. This correlated with the observed decrease in autophagy. Overexpression of GAPDH had a protective effect on cells resulting in a decreased load of aggregates. Our results demonstrate that GAPDH assists in the clearance of protein aggregates by autophagy induction. These findings provide a new insight in understanding the mechanism of mutant huntingtin aggregate clearance. By studying the molecular mechanism of protein aggregate clearance via GAPDH, we hope to provide a new approach in targeting and understanding several neurodegenerative disorders.


Asunto(s)
Autofagia/fisiología , Gliceraldehído-3-Fosfato Deshidrogenasas/fisiología , Proteína Huntingtina/metabolismo , Agregado de Proteínas , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Células HEK293 , Humanos , Proteína Huntingtina/genética , Neuroblastoma , Péptidos/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-28642848

RESUMEN

Iron is crucial for the survival of living cells, particularly the human pathogen Mycobacterium tuberculosis (M.tb) which uses multiple strategies to acquire and store iron. M.tb synthesizes high affinity iron chelators (siderophores), these extract iron from host iron carrier proteins such as transferrin (Tf) and lactoferrin (Lf). Recent studies have revealed that M.tb may also relocate several housekeeping proteins to the cell surface for capture and internalization of host iron carrier protein transferrin. One of the identified receptors is the glycolytic enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This conserved multifunctional protein has been identified as a virulence factor in several other bacterial species. Considering the close structural and functional homology between the two major human iron carrier proteins (Tf and Lf) and the fact that Lf is abundantly present in lung fluid (unlike Tf which is present in plasma), we evaluated whether GAPDH also functions as a dual receptor for Lf. The current study demonstrates that human Lf is sequestered at the bacterial surface by GAPDH. The affinity of Lf-GAPDH (31.7 ± 1.68 nM) is higher as compared to Tf-GAPDH (160 ± 24 nM). Two GAPDH mutants were analyzed for their enzymatic activity and interaction with Lf. Lastly, the present computational studies offer the first significant insights for the 3D structure of monomers and assembled tetramer with the associated co-factor NAD+. Sequence analysis and structural modeling identified the surface exposed, evolutionarily conserved and functional residues and predicted the effect of mutagenesis on GAPDH.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Lactoferrina/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Sitios de Unión , Línea Celular , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Humanos , Hierro/metabolismo , Pulmón , Modelos Moleculares , Mutación , Mycobacterium tuberculosis/citología , Conformación Proteica , Análisis de Secuencia , Células THP-1 , Transferrina/metabolismo , Factores de Virulencia
15.
Sci Rep ; 5: 18465, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26672975

RESUMEN

Lactoferrin is a crucial nutritionally important pleiotropic molecule and iron an essential trace metal for all life. The current paradigm is that living organisms have evolved specific membrane anchored receptors along with iron carrier molecules for regulated absorption, transport, storage and mobilization of these vital nutrients. We present evidence for the existence of non-canonical pathway whereby cells actively forage these vital resources from beyond their physical boundaries, by secreting the multifunctional housekeeping enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) into the extracellular milieu. This effect's an autocrine/paracrine acquisition of target ligand into the cell. Internalization by this route is extensively favoured even by cells that express surface receptors for lactoferrin and involves urokinase plasminogen activator receptor (uPAR). We also demonstrate the operation of this phenomenon during inflammation, as an arm of the innate immune response where lactoferrin denies iron to invading microorganisms by chelating it and then itself being sequestered into surrounding host cells by GAPDH.


Asunto(s)
Espacio Extracelular/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Hierro/metabolismo , Lactoferrina/metabolismo , Animales , Transporte Biológico , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Duodeno/metabolismo , Endosomas/metabolismo , Endosomas/ultraestructura , Espacio Extracelular/enzimología , Femenino , Citometría de Flujo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones Endogámicos BALB C , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA