Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Plant Physiol ; 182(2): 840-856, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31727678

RESUMEN

APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) gene clusters regulate the biosynthesis of diverse specialized metabolites, including steroidal glycoalkaloids in tomato (Solanum lycopersicum) and potato (Solanum tuberosum), nicotine in tobacco (Nicotiana tabacum), and pharmaceutically valuable terpenoid indole alkaloids in Madagascar periwinkle (Catharanthus roseus). However, the regulatory relationships between individual AP2/ERF genes within the cluster remain unexplored. We uncovered intracluster regulation of the C. roseus AP2/ERF regulatory circuit, which consists of ORCA3, ORCA4, and ORCA5 ORCA3 and ORCA5 activate ORCA4 by directly binding to a GC-rich motif in the ORCA4 promoter. ORCA5 regulates its own expression through a positive autoregulatory loop and indirectly activates ORCA3 In determining the functional conservation of AP2/ERF clusters in other plant species, we found that GC-rich motifs are present in the promoters of analogous AP2/ERF clusters in tobacco, tomato, and potato. Intracluster regulation is evident within the tobacco NICOTINE2 (NIC2) ERF cluster. Moreover, overexpression of ORCA5 in tobacco and of NIC2 ERF189 in C. roseus hairy roots activates nicotine and terpenoid indole alkaloid pathway genes, respectively, suggesting that the AP2/ERFs are functionally equivalent and are likely to be interchangeable. Elucidation of the intracluster and mutual regulation of transcription factor gene clusters advances our understanding of the underlying molecular mechanism governing regulatory gene clusters in plants.


Asunto(s)
Etilenos/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Plantas/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Factores de Transcripción/metabolismo , Acetatos/metabolismo , Acetatos/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Catharanthus/genética , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Etilenos/farmacología , Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Homeodominio/genética , Solanum lycopersicum/genética , Familia de Multigenes/genética , Familia de Multigenes/fisiología , Motivos de Nucleótidos/genética , Oxilipinas/metabolismo , Oxilipinas/farmacología , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Unión Proteica/genética , Unión Proteica/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solanum tuberosum/genética , Nicotiana/genética , Factores de Transcripción/genética , Activación Transcripcional/genética , Regulación hacia Arriba
2.
Plant Physiol ; 184(2): 658-665, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32663164

RESUMEN

Cross-family transcription factor (TF) interactions play critical roles in the regulation of plant developmental and metabolic pathways. WRINKLED1 (WRI1) is a key TF governing oil biosynthesis in plants. However, little is known about WRI1-interacting factors and their roles in oil biosynthesis. We screened a TF library using Arabidopsis (Arabidopsis thaliana) WRI1 (AtWRI1) as bait in yeast two-hybrid assays and identified three TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family TFs, namely TCP4, TCP10, and TCP24, as AtWRI1-interacting partners. The physical interaction between AtWRI1 and TCPs was further validated using bimolecular fluorescence complementation assays. TCPs play important roles in various plant developmental processes; however, their involvement in fatty acid biosynthesis was not previously known. Coexpression of TCP4, but not TCP10 or TCP24, with AtWRI1 reduced AtWRI1-mediated oil biosynthesis in Nicotiana benthamiana leaves. Transcriptomic analysis in transgenic Arabidopsis plants with enhanced TCP4 activity engineered by expressing rTCP4 (i.e. miR319-resistant TCP4) revealed that AtWRI1 target genes were significantly repressed. TCP4 expression is strongly correlated with AtWRI1 during embryo development. A tcp4 loss-of-function mutant, the jaw-D mutant with a strong reduction of TCP4 expression, and a tcp2 tcp4 tcp10 triple mutant accumulated more seed oil than wild-type Arabidopsis. In addition, TCP4 repressed the AtWRI1-mediated transactivation of the promoters of fatty acid biosynthetic genes. Collectively, our findings suggest that TCP4 represses fatty acid biosynthetic gene expression through interaction with AtWRI1, leading to a reduction of AtWRI1-mediated seed oil accumulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ácidos Grasos/biosíntesis , Semillas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis , Semillas/crecimiento & desarrollo , Nicotiana
3.
J Exp Bot ; 72(5): 1661-1676, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33258946

RESUMEN

Protein phosphatases (PPs) and protein kinases (PKs) regulate numerous developmental, defense, and phytohormone signaling processes in plants. However, the underlying regulatory mechanism governing biosynthesis of specialized metabolites, such as alkaloids, by the combined effects of PPs and PKs, is insufficiently understood. Here, we report the characterization of a group B protein phosphatase type 2C, NtPP2C2b, that likely acts upstream of the NICOTINE2 locus APETALA 2/Ethylene Response Factors (AP2/ERFs), to regulate nicotine biosynthesis in tobacco. Similar to the nicotine pathway genes, NtPP2C2b is highly expressed in roots and induced by jasmonic acid (JA). Overexpression of NtPP2C2b in transgenic hairy roots or stable transgenic tobacco plants repressed nicotine pathway gene expression and reduced nicotine accumulation. Additionally, transient overexpression of NtPP2C2b, together with the NtERF221, repressed transactivation of the quinolinate phosphoribosyltransferase promoter in tobacco cells. We further demonstrate that the JA-responsive tobacco mitogen-activated protein kinase (MAPK) 4 interacts with NtPP2C2b in yeast and plant cells. Conditional overexpression of NtMPK4 in tobacco hairy roots up-regulated nicotine pathway gene expression and increased nicotine accumulation. Our findings suggest that a previously uncharacterized PP-PK module acts to modulate alkaloid biosynthesis, highlighting the importance of post-translational control in the biosynthesis of specialized plant metabolites.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Nicotiana , Nicotina/biosíntesis , Fosfoproteínas Fosfatasas , Proteínas de Plantas , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oxilipinas , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/metabolismo
4.
Biotechnol Lett ; 43(11): 2085-2103, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34564757

RESUMEN

Plants synthesize a vast array of specialized metabolites that primarily contribute to their defense and survival under adverse conditions. Many of the specialized metabolites have therapeutic values as drugs. Biosynthesis of specialized metabolites is affected by environmental factors including light, temperature, drought, salinity, and nutrients, as well as pathogens and insects. These environmental factors trigger a myriad of changes in gene expression at the transcriptional and posttranscriptional levels. The dynamic changes in gene expression are mediated by several regulatory proteins that perceive and transduce the signals, leading to up- or down-regulation of the metabolic pathways. Exploring the environmental effects and related signal cascades is a strategy in metabolic engineering to produce valuable specialized metabolites. However, mechanistic studies on environmental factors affecting specialized metabolism are limited. The medicinal plant Catharanthus roseus (Madagascar periwinkle) is an important source of bioactive terpenoid indole alkaloids (TIAs), including the anticancer therapeutics vinblastine and vincristine. The emerging picture shows that various environmental factors significantly alter TIA accumulation by affecting the expression of regulatory and enzyme-encoding genes in the pathway. Compared to our understanding of the TIA pathway in response to the phytohormone jasmonate, the impacts of environmental factors on TIA biosynthesis are insufficiently studied and discussed. This review thus focuses on these aspects and discusses possible strategies for metabolic engineering of TIA biosynthesis. PURPOSE OF WORK: Catharanthus roseus is a rich source of bioactive terpenoid indole alkaloids (TIAs). The objective of this work is to present a comprehensive account of the influence of various biotic and abiotic factors on TIA biosynthesis and to discuss possible strategies to enhance TIA production through metabolic engineering.


Asunto(s)
Catharanthus/metabolismo , Ingeniería Metabólica/métodos , Alcaloides de Triptamina Secologanina/metabolismo , Vías Biosintéticas/genética , Catharanthus/genética , Regulación de la Expresión Génica de las Plantas/genética , Plantas Medicinales/genética , Plantas Medicinales/metabolismo
5.
Planta ; 252(4): 64, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32968874

RESUMEN

MAIN CONCLUSION: Transcriptomic analysis revealed maleic hydrazide suppresses apical and axillary bud development by altering the expression of genes related to meristem development, cell division, DNA replication, DNA damage and recombination, and phytohormone signaling. Topping (removal of apical buds) is a common agricultural practice for some crop plants including cotton, cannabis, and tobacco. Maleic hydrazide (MH) is a systemic suckercide, a chemical that inhibits shoot bud growth, used to control the growth of apical (ApB) and axillary buds (AxB) following topping. However, the influence of MH on gene expression and the underlying molecular mechanism of controlling meristem development are not well studied. Our RNA sequencing analysis showed that MH significantly influences the transcriptomic landscape in ApB and AxB of chemically topped tobacco. Gene ontology (GO) enrichment analysis revealed that upregulated genes in ApB were enriched for phosphorelay signal transduction, and the regulation of transition timing from vegetative to reproductive phase, whereas downregulated genes were largely associated with meristem maintenance, cytokinin metabolism, cell wall synthesis, photosynthesis, and DNA metabolism. In MH-treated AxB, GO terms related to defense response and oxylipin metabolism were overrepresented in upregulated genes. GO terms associated with cell cycle, DNA metabolism, and cytokinin metabolism were enriched in downregulated genes. Expression of KNOX and MADS transcription factor (TF) family genes, known to be involved in meristem development, were affected in ApB and AxB by MH treatment. The promoters of MH-responsive genes are enriched for several known cis-acting elements, suggesting the involvement of a subset of TF families. Our findings suggest that MH affects shoot bud development in chemically topped tobacco by altering the expression of genes related to meristem development, DNA repair and recombination, cell division, and phytohormone signaling.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hidrazida Maleica , Nicotiana , Brotes de la Planta , Transcriptoma , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hidrazida Maleica/farmacología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Nicotiana/efectos de los fármacos , Nicotiana/genética , Transcriptoma/efectos de los fármacos
6.
Plant Physiol ; 180(3): 1336-1350, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31123092

RESUMEN

Catharanthus roseus is the exclusive source of an array of terpenoid indole alkaloids including the anticancer drugs vincristine and vinblastine, derived from the coupling of catharanthine and vindoline. Leaf-synthesized vindoline is regulated by light. A seven-step enzymatic process is involved in the sequential conversion of tabersonine to vindoline; however, the regulatory mechanism controlling the expression of genes encoding these enzymes has not been elucidated. Here, we identified CrGATA1, an Leu-Leu-Met domain GATA transcription factor that regulates light-induced vindoline biosynthesis in C. roseus seedlings. Expression of CrGATA1 and the vindoline pathway genes T16H2, T3O, T3R, D4H, and DAT was significantly induced by light. In addition, CrGATA1 activated the promoters of five light-responsive vindoline pathway genes in plant cells. Two GATC motifs in the D4H promoter were critical for CrGATA1-mediated transactivation. Transient overexpression of CrGATA1 in C. roseus seedlings resulted in up-regulation of vindoline pathway genes and increased vindoline accumulation. Conversely, virus-induced gene silencing of CrGATA1 in young C. roseus leaves significantly repressed key vindoline pathway genes and reduced vindoline accumulation. Furthermore, we showed that a C. roseus Phytochrome Interacting Factor, CrPIF1, is a repressor of CrGATA1 and vindoline biosynthesis. Transient overexpression or virus-induced gene silencing of CrPIF1 in C. roseus seedlings altered CrGATA1 and vindoline pathway gene expression in the dark. CrPIF1 repressed CrGATA1 and DAT promoter activity by binding to G/E-box/PBE elements. Our findings reveal a regulatory module involving Phytochrome Interacting Factor -GATA that governs light-mediated biosynthesis of specialized metabolites.


Asunto(s)
Catharanthus/metabolismo , Factor de Transcripción GATA1/metabolismo , Fitocromo/metabolismo , Factores de Transcripción/metabolismo , Vinblastina/análogos & derivados , Secuencias de Aminoácidos/genética , Vías Biosintéticas/genética , Vías Biosintéticas/efectos de la radiación , Catharanthus/genética , Factor de Transcripción GATA1/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Fitocromo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Interferencia de ARN , Plantones/genética , Plantones/metabolismo , Factores de Transcripción/genética , Vinblastina/biosíntesis
8.
Planta ; 248(1): 183, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29680864

RESUMEN

In the original version of this article the name of the second author was misspelled. The correct name is: Xiaomin Wang.

9.
Planta ; 248(1): 171-182, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29644447

RESUMEN

MAIN CONCLUSION: Genome-wide identification, expression analysis, and functional characterization of previously uncharacterized hexokinase family of oil crop, Brassica napus, underscore the importance of this gene family in plant growth and development. In plants, the multi-gene family of dual-function hexokinases (HXKs) plays important roles in sugar metabolism and sensing that affect growth and development. Rapeseed (Brassica napus L.) is an important oil crop; however, little is known about the B. napus HXK gene family. We identified 19 putative HXKs in B. napus genome. B. rapa and B. oleracea, the two diploid progenitors of B. napus, contributed almost equally to the BnHXK genes. Phylogenetic analysis divided the 19 BnHXKs into four groups. The exon-intron structures of BnHXKs share high similarity to those of HXKs in Arabidopsis and rice. The group III and IV BnHXKs are highly expressed in roots, whereas group I members preferentially express in leaves. Analysis of seed transcriptomes at different developmental stages showed that most of group I and IV HXKs are highly expressed 2-weeks after pollination (2WAP), compared to 4WAP for group III. BnHKXs are differentially expressed in susceptible and tolerant B. napus cultivars after fungal infection, suggesting the possible involvement in defense response. We generated rapeseed RNAi lines for BnHXK9, a member of relatively less characterized group IV, by pollen-mediated gene transformation. The seedlings of BnHXK9-RNAi lines showed delayed growth compared to the wild type. The RNAi plants were dwarf with curly leaves, suggesting the involvement of BnHXK9 in plant development. Collectively, our findings provides a comprehensive account of BnHXK gene family in an important crop and a starting point for further elucidation of their roles in sugar metabolism and sensing, as well as plant growth and development.


Asunto(s)
Brassica napus/genética , Hexoquinasa/genética , Brassica napus/enzimología , Mapeo Cromosómico , Minería de Datos , Perfilación de la Expresión Génica , Flujo Génico/genética , Estudio de Asociación del Genoma Completo , Hexoquinasa/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Reacción en Cadena de la Polimerasa , Alineación de Secuencia
10.
New Phytol ; 217(4): 1566-1581, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29178476

RESUMEN

The pharmaceutically valuable monoterpene indole alkaloids (MIAs) in Catharanthus roseus are derived from the indole and iridoid pathways that respond to jasmonate (JA) signaling. Two classes of JA-responsive bHLH transcription factor (TF), CrMYC2 and BIS1/BIS2, are known to regulate the indole and iridoid pathways, respectively. However, upregulation of either one of the TF genes does not lead to increased MIA accumulation. Moreover, little is known about the interconnection between the CrMYC2 and BIS transcriptional cascades and the hierarchical position of BIS1/BIS2 in JA signaling. Here, we report that a newly identified bHLH factor, Repressor of MYC2 Targets 1 (RMT1), is activated by CrMYC2 and BIS1, and acts as a repressor of the CrMYC2 targets. In addition, we isolated and functionally characterized the core C. roseus JA signaling components, including CORONATINE INSENSITIVE 1 (COI1) and JASMONATE ZIM domain (JAZ) proteins. CrMYC2 and BIS1 are repressed by the JAZ proteins in the absence of JA, but de-repressed by the SCFCOI1 complex on perception of JA. Our findings suggest that the repressors, JAZs and RMT1, mediate crosstalk between the CrMYC2 and BIS regulatory cascades to balance the metabolic flux in MIA biosynthesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Vías Biosintéticas , Catharanthus/genética , Ciclopentanos/metabolismo , Redes Reguladoras de Genes , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de Plantas , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Unión Proteica , Saccharomyces cerevisiae/metabolismo
11.
J Exp Bot ; 69(18): 4267-4281, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-29931167

RESUMEN

Biosynthesis of medicinally valuable terpenoid indole alkaloids (TIAs) in Catharanthus roseus is regulated by transcriptional activators such as the basic helix-loop-helix factor CrMYC2. However, the transactivation effects are often buffered by repressors, such as the bZIP factors CrGBF1 and CrGBF2, possibly to fine-tune the accumulation of cytotoxic TIAs. Questions remain as to whether and how these factors interact to modulate TIA production. We demonstrated that overexpression of CrMYC2 induces CrGBF expression and results in reduced alkaloid accumulation in C. roseus hairy roots. We found that CrGBF1 and CrGBF2 form homo- and heterodimers to repress the transcriptional activities of key TIA pathway gene promoters. We showed that CrGBFs dimerize with CrMYC2, and CrGBF1 binds to the same cis-elements (T/G-box) as CrMYC2 in the target gene promoters. Our findings suggest that CrGBFs antagonize CrMYC2 transactivation possibly by competitive binding to the T/G-box in the target promoters and/or protein-protein interaction that forms a non-DNA binding complex that prevents CrMYC2 from binding to its target promoters. Homo- and heterodimer formation allows fine-tuning of the amplitude of TIA gene expression. Our findings reveal a previously undescribed regulatory mechanism that governs the TIA pathway genes to balance metabolic flux for TIA production in C. roseus.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Catharanthus/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Alcaloides de Triptamina Secologanina/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Catharanthus/metabolismo , Proteínas de Plantas/metabolismo
12.
New Phytol ; 213(3): 1107-1123, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27801944

RESUMEN

Catharanthus roseus produces bioactive terpenoid indole alkaloids (TIAs), including the chemotherapeutics, vincristine and vinblastine. Transcriptional regulation of TIA biosynthesis is not fully understood. The jasmonic acid (JA)-responsive AP2/ERF transcription factor (TF), ORCA3, and its regulator, CrMYC2, play key roles in TIA biosynthesis. ORCA3 forms a physical cluster with two uncharacterized AP2/ERFs, ORCA4 and 5. Here, we report that (1) the ORCA gene cluster is differentially regulated; (2) ORCA4, while overlapping functionally with ORCA3, modulates an additional set of TIA genes. Unlike ORCA3, ORCA4 overexpression resulted in dramatic increase of TIA accumulation in C. roseus hairy roots. In addition, CrMYC2 is capable of activating ORCA3 and co-regulating TIA pathway genes concomitantly with ORCA3. The ORCA gene cluster and CrMYC2 act downstream of a MAP kinase cascade that includes a previously uncharacterized MAP kinase kinase, CrMAPKK1. Overexpression of CrMAPKK1 in C. roseus hairy roots upregulated TIA pathways genes and increased TIA accumulation. This work provides detailed characterization of a TF gene cluster and advances our understanding of the transcriptional and post-translational regulatory mechanisms that govern TIA biosynthesis in C. roseus.


Asunto(s)
Catharanthus/enzimología , Catharanthus/genética , Regulación de la Expresión Génica de las Plantas , Sistema de Señalización de MAP Quinasas/genética , Familia de Multigenes , Proteínas de Plantas/genética , Alcaloides de Triptamina Secologanina/metabolismo , Factores de Transcripción/genética , Acetatos/farmacología , Secuencias de Aminoácidos , Catharanthus/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaboloma/genética , Modelos Biológicos , Oxilipinas/farmacología , Fosforilación/efectos de los fármacos , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
13.
Planta ; 242(1): 283-93, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25916310

RESUMEN

MAIN CONCLUSION: Our work strongly suggests that microRNA858 regulates anthocyanin biosynthesis in tomato by modulating the expression of two R2R3 MYB transcription factors, underscoring the importance of microRNAs in the gene regulatory network controlling specialized metabolism in plants. The biological functions of microRNA858 (miR858), a recently identified small RNA, are not well understood. Here, we identified miR858 as a negative regulator of anthocyanin biosynthesis in tomato (Solanum lycopersicum). RNA ligase-mediated 5'RACE cleavage assay showed that miR858 mediates the cleavage of SlMYB7-like and SlMYB48-like transcripts in tomato. Expression analysis revealed an inverse correlation between the accumulation of miR858 and its target SlMYB7-like mRNA, in different tissues of tomato. Subsequently, a small tandem target mimic construct for blocking miR858 (STTM858) was generated and transformed into tomato. The majority of endogenous miR858 was blocked in STTM858 over-expressing tomato plants, whereas SlMYB7-like transcripts increased significantly. Concomitantly, upregulated expression was detected for several anthocyanin biosynthetic genes, including PAL, CHS, DFR, ANS and 3GT. As a result, anthocyanins were highly accumulated in young seedlings, leaves, stems and leaf buds of the transgenic plants under normal growth conditions. In addition, over-expression of STTM858 in tomato activated another MYB transcription factor, SlMYB48, implicating the possible involvement of SlMYB48 in anthocyanin biosynthesis.


Asunto(s)
Antocianinas/metabolismo , MicroARNs/antagonistas & inhibidores , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Antocianinas/biosíntesis , Secuencia de Bases , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , MicroARNs/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Plantas Modificadas Genéticamente , Estabilidad del ARN/genética , Alineación de Secuencia , Factores de Transcripción/metabolismo , Transcripción Genética
14.
Proc Natl Acad Sci U S A ; 109(30): E2091-7, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778424

RESUMEN

The maize R2R3-MYB regulator C1 cooperates with the basic helix-loop-helix (bHLH) factor R to activate the expression of anthocyanin biosynthetic genes coordinately. As is the case for other bHLH factors, R harbors several protein-protein interaction domains. Here we show that not the classical but rather a briefly extended R bHLH region forms homodimers that bind canonical G-box DNA motifs. This bHLH DNA-binding activity is abolished if the C-terminal ACT (aspartokinase, chorismate, and TyrA) domain is licensed to homodimerize. Then the bHLH remains in the monomeric form, allowing it to interact with R-interacting factor 1 (RIF1). In this configuration, the R-RIF1 complex is recruited to the promoters of a subset of anthocyanin biosynthetic genes, such as A1, through the interaction with its MYB partner C1. If, however, the ACT domain remains monomeric, the bHLH region dimerizes and binds to G-boxes present in several anthocyanin genes, such as Bz1. Our results provide a mechanism by which a dimerization domain in a bHLH factor behaves as a switch that permits distinct configurations of a regulatory complex to be tethered to different promoters. Such a combinatorial gene regulatory framework provides one mechanism by which genes lacking obviously conserved cis-regulatory elements are regulated coordinately.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Vías Biosintéticas/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Modelos Moleculares , Proteínas Nucleares/química , Proteínas de Plantas/química , Zea mays/química , Antocianinas/biosíntesis , Vías Biosintéticas/genética , Inmunoprecipitación de Cromatina , Dimerización , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica de las Plantas/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Técnicas del Sistema de Dos Híbridos
15.
Plant J ; 74(3): 435-47, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23373825

RESUMEN

Ubiquitin/26S proteasome (UPS)-dependent proteolysis of a variety of cellular proteins plays an essential role in many basic cellular processes. UPS impacts transcriptional regulation by controlling the stability, and thus the activity, of numerous transcription factors (TFs). In Arabidopsis, trichome development and flavonoid metabolism are intimately connected, and several TFs have been identified that simultaneously control both processes. Here we show that UPS-dependent proteolysis of two of these TFs, GLABROUS 3 (GL3) and ENHANCER OF GL3 (EGL3), is mediated by ubiquitin protein ligase 3 (UPL3). Cell-free degradation and in planta stabilization assays in the presence of MG132, an inhibitor of proteasome activity, demonstrated that the degradation of GL3 and EGL3 proteins is 26S UPS-dependent. Yeast- or protoplast-based two-hybrid and bimolecular fluorescent complementation assays showed that GL3 and EGL3 interact via their C-terminal domains with the N-terminal portion of UPL3. Moreover, both TFs are stabilized and show increased activities in a upl3 mutant background. Gene expression analyses revealed that UPL3 expression is negatively affected by mutation in the gl3 locus, but is moderately upregulated by the overexpression of GL3, suggesting the presence of a regulatory loop involving GL3 and UPL3. Our findings underscore the importance of post-translational controls in epidermal cell differentiation and flavonoid metabolism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Flavonoides/biosíntesis , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , Estabilidad de Enzimas , Sitios Genéticos , Ligasas/genética , Ligasas/metabolismo , Lisina/metabolismo , Mutación , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteolisis
16.
Biochim Biophys Acta ; 1829(11): 1236-47, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24113224

RESUMEN

Plants produce thousands of secondary metabolites (a.k.a. specialized metabolites) of diverse chemical nature. These compounds play important roles in protecting plants under adverse conditions. Many secondary metabolites are valued for their pharmaceutical properties. Because of their beneficial effects to health, biosynthesis of secondary metabolites has been a prime focus of research. Many transcription factors have been characterized for their roles in regulating biosynthetic pathways at the transcriptional level. The emerging picture of transcriptional regulation of secondary metabolite biosynthesis suggests that the expression of activators and repressors, in response to phytohormones and different environmental signals, forms a dynamic regulatory network that fine-tune the timing, amplitude and tissue specific expression of pathway genes and the subsequent accumulation of these compounds. Recent research has revealed that some metabolic pathways are also controlled by posttranscriptional and posttranslational mechanisms. This review will use recent developments in the biosynthesis of flavonoids, alkaloids and terpenoids to highlight the complexity of transcriptional regulation of secondary metabolite biosynthesis.


Asunto(s)
Alcaloides/biosíntesis , Flavonoides/biosíntesis , Regulación de la Expresión Génica de las Plantas , Plantas/metabolismo , Terpenos/metabolismo , Transcripción Genética
17.
BMC Genomics ; 15: 502, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24950738

RESUMEN

BACKGROUND: To combat infection to biotic stress plants elicit the biosynthesis of numerous natural products, many of which are valuable pharmaceutical compounds. Jasmonate is a central regulator of defense response to pathogens and accumulation of specialized metabolites. Catharanthus roseus produces a large number of terpenoid indole alkaloids (TIAs) and is an excellent model for understanding the regulation of this class of valuable compounds. Recent work illustrates a possible role for the Catharanthus WRKY transcription factors (TFs) in regulating TIA biosynthesis. In Arabidopsis and other plants, the WRKY TF family is also shown to play important role in controlling tolerance to biotic and abiotic stresses, as well as secondary metabolism. RESULTS: Here, we describe the WRKY TF families in response to jasmonate in Arabidopsis and Catharanthus. Publically available Arabidopsis microarrays revealed at least 30% (22 of 72) of WRKY TFs respond to jasmonate treatments. Microarray analysis identified at least six jasmonate responsive Arabidopsis WRKY genes (AtWRKY7, AtWRKY20, AtWRKY26, AtWRKY45, AtWRKY48, and AtWRKY72) that have not been previously reported. The Catharanthus WRKY TF family is comprised of at least 48 members. Phylogenetic clustering reveals 11 group I, 32 group II, and 5 group III WRKY TFs. Furthermore, we found that at least 25% (12 of 48) were jasmonate responsive, and 75% (9 of 12) of the jasmonate responsive CrWRKYs are orthologs of AtWRKYs known to be regulated by jasmonate. CONCLUSION: Overall, the CrWRKY family, ascertained from transcriptome sequences, contains approximately 75% of the number of WRKYs found in other sequenced asterid species (pepper, tomato, potato, and bladderwort). Microarray and transcriptomic data indicate that expression of WRKY TFs in Arabidopsis and Catharanthus are under tight spatio-temporal and developmental control, and potentially have a significant role in jasmonate signaling. Profiling of CrWRKY expression in response to jasmonate treatment revealed potential associations with secondary metabolism. This study provides a foundation for further characterization of WRKY TFs in jasmonate responses and regulation of natural product biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Catharanthus/metabolismo , Ciclopentanos/metabolismo , Proteínas de Unión al ADN/fisiología , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Arabidopsis/genética , Catharanthus/genética , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Datos de Secuencia Molecular , Filogenia , Transducción de Señal , Transcriptoma
18.
Planta ; 239(2): 381-96, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24178585

RESUMEN

In the present study, we developed a set of three chimeric/hybrid promoters namely FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt incorporating different important domains of Figwort Mosaic Virus sub-genomic transcript promoter (FSgt, -270 to -60), Mirabilis Mosaic Virus sub-genomic transcript promoter (MSgt, -306 to -125) and Peanut Chlorotic Streak Caulimovirus full-length transcript promoter (PFlt-, -353 to +24 and PFlt-UAS, -353 to -49). We demonstrated that these chimeric/hybrid promoters can drive the expression of reporter genes in different plant species including tobacco, Arabidopsis, petunia, tomato and spinach. FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt promoters showed 4.2, 1.5 and 1.2 times stronger GUS activities compared to the activity of the CaMV35S promoter, respectively, in tobacco protoplasts. Protoplast-derived recombinant promoter driven GFP showed enhanced accumulation compared to that obtained under the CaMV35S promoter. FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt promoters showed 3.0, 1.3 and 1.0 times stronger activities than the activity of the CaMV35S² (a modified version of the CaMV35S promoter with double enhancer domain) promoter, respectively, in tobacco (Nicotiana tabacum, var. Samsun NN). Alongside, we observed a fair correlation between recombinant promoter-driven GUS accumulation with the corresponding uidA-mRNA level in transgenic tobacco. Histochemical (X-gluc) staining of whole transgenic seedlings and fluorescence images of ImaGene Green™ treated floral parts expressing the GUS under the control of recombinant promoters also support above findings. Furthermore, we confirmed that these chimeric promoters are inducible in the presence of 150 µM salicylic acid (SA) and abscisic acid (ABA). Taken altogether, we propose that SA/ABA inducible chimeric/recombinant promoters could be used for strong expression of gene(s) of interest in crop plants.


Asunto(s)
Caulimovirus/genética , Productos Agrícolas/genética , ADN Recombinante , Vectores Genéticos , Reguladores del Crecimiento de las Plantas/farmacología , Regiones Promotoras Genéticas/genética , Ácido Abscísico/farmacología , Productos Agrícolas/citología , Productos Agrícolas/efectos de los fármacos , Cartilla de ADN/genética , Flores/citología , Flores/efectos de los fármacos , Flores/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Plantas Modificadas Genéticamente , Protoplastos , Ácido Salicílico/farmacología , Plantones/citología , Plantones/efectos de los fármacos , Plantones/genética , Semillas/citología , Semillas/efectos de los fármacos , Semillas/genética , Nicotiana/citología , Nicotiana/efectos de los fármacos , Nicotiana/genética , Transcripción Genética
19.
Plant Methods ; 20(1): 26, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347628

RESUMEN

BACKGROUND: Virus-induced gene silencing (VIGS) is widely used in plant functional genomics. However, the efficiency of VIGS in young plantlets varies across plant species. Additionally, VIGS is not optimized for many plant species, especially medicinal plants that produce valuable specialized metabolites. RESULTS: We evaluated the efficacy of five-day-old, etiolated seedlings of Catharanthus roseus (periwinkle) for VIGS. The seedlings were vacuum-infiltrated with Agrobacterium tumefaciens GV3101 cells carrying the tobacco rattle virus (TRV) vectors. The protoporphyrin IX magnesium chelatase subunit H (ChlH) gene, a key gene in chlorophyll biosynthesis, was used as the target for VIGS, and we observed yellow cotyledons 6 days after infiltration. As expected, the expression of CrChlH and the chlorophyll contents of the cotyledons were significantly decreased after VIGS. To validate the cotyledon based-VIGS method, we silenced the genes encoding several transcriptional regulators of the terpenoid indole alkaloid (TIA) biosynthesis in C. roseus, including two activators (CrGATA1 and CrMYC2) and two repressors (CrGBF1 and CrGBF2). Silencing CrGATA1 led to downregulation of the vindoline pathway genes (T3O, T3R, and DAT) and decreased vindoline contents in cotyledons. Silencing CrMYC2, followed by elicitation with methyl jasmonate (MeJA), resulted in the downregulation of ORCA2 and ORCA3. We also co-infiltrated C. roseus seedlings with TRV vectors that silence both CrGBF1 and CrGBF2 and overexpress CrMYC2, aiming to simultaneous silencing two repressors while overexpressing an activator. The simultaneous manipulation of repressors and activator resulted in significant upregulation of the TIA pathway genes. To demonstrate the broad application of the cotyledon-based VIGS method, we optimized the method for two other valuable medicinal plants, Glycyrrhiza inflata (licorice) and Artemisia annua (sweet wormwood). When TRV vectors carrying the fragments of the ChlH genes were infiltrated into the seedlings of these plants, we observed yellow cotyledons with decreased chlorophyll contents. CONCLUSIONS: The widely applicable cotyledon-based VIGS method is faster, more efficient, and easily accessible to additional treatments than the traditional VIGS method. It can be combined with transient gene overexpression to achieve simultaneous up- and down-regulation of desired genes in non-model plants. This method provides a powerful tool for functional genomics of medicinal plants, facilitating the discovery and production of valuable therapeutic compounds.

20.
Planta ; 238(6): 1039-49, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23979312

RESUMEN

WRKY transcription factors (TFs) are emerging as an important group of regulators of plant secondary metabolism. However, the cis-regulatory elements associated with their regulation have not been well characterized. We have previously demonstrated that CrWRKY1, a member of subgroup III of the WRKY TF family, regulates biosynthesis of terpenoid indole alkaloids in the ornamental and medicinal plant, Catharanthus roseus. Here, we report the isolation and functional characterization of the CrWRKY1 promoter. In silico analysis of the promoter sequence reveals the presence of several potential TF binding motifs, indicating the involvement of additional TFs in the regulation of the TIA pathway. The CrWRKY1 promoter can drive the expression of a ß-glucuronidase (GUS) reporter gene in native (C. roseus protoplasts and transgenic hairy roots) and heterologous (transgenic tobacco seedlings) systems. Analysis of 5'- or 3'-end deletions indicates that the sequence located between positions -140 to -93 bp and -3 to +113 bp, relative to the transcription start site, is critical for promoter activity. Mutation analysis shows that two overlapping as-1 elements and a CT-rich motif contribute significantly to promoter activity. The CrWRKY1 promoter is induced in response to methyl jasmonate (MJ) treatment and the promoter region between -230 and -93 bp contains a putative MJ-responsive element. The CrWRKY1 promoter can potentially be used as a tool to isolate novel TFs involved in the regulation of the TIA pathway.


Asunto(s)
Catharanthus/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Acetatos/farmacología , Catharanthus/metabolismo , Ciclopentanos/farmacología , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Genes Reporteros , Redes y Vías Metabólicas , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/efectos de los fármacos , Alcaloides de Triptamina Secologanina/metabolismo , Nicotiana/genética , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA