Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 79(3): 472-487.e10, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32531202

RESUMEN

It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genoma , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Procesamiento Proteico-Postraduccional , Neoplasias Cutáneas/genética , Acetilación , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular Tumoral , Secuencia Conservada , Elementos de Facilitación Genéticos , Femenino , Xenoinjertos , Humanos , Masculino , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Desnudos , Factor de Transcripción Asociado a Microftalmía/química , Factor de Transcripción Asociado a Microftalmía/metabolismo , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Pez Cebra
2.
Development ; 149(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35485397

RESUMEN

Melanocyte stem cells (McSCs) in zebrafish serve as an on-demand source of melanocytes during growth and regeneration, but metabolic programs associated with their activation and regenerative processes are not well known. Here, using live imaging coupled with scRNA-sequencing, we discovered that, during regeneration, quiescent McSCs activate a dormant embryonic neural crest transcriptional program followed by an aldehyde dehydrogenase (Aldh) 2 metabolic switch to generate progeny. Unexpectedly, although ALDH2 is well known for its aldehyde-clearing mechanisms, we find that, in regenerating McSCs, Aldh2 activity is required to generate formate - the one-carbon (1C) building block for nucleotide biosynthesis - through formaldehyde metabolism. Consequently, we find that disrupting the 1C cycle with low doses of methotrexate causes melanocyte regeneration defects. In the absence of Aldh2, we find that purines are the metabolic end product sufficient for activated McSCs to generate progeny. Together, our work reveals McSCs undergo a two-step cell state transition during regeneration, and that the reaction products of Aldh2 enzymes have tissue-specific stem cell functions that meet metabolic demands in regeneration.


Asunto(s)
Melanocitos , Pez Cebra , Animales , Diferenciación Celular , Cresta Neural , Células Madre
3.
PLoS Genet ; 15(2): e1007941, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30811380

RESUMEN

Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Receptores ErbB/metabolismo , Pigmentos Biológicos/metabolismo , Receptor de Endotelina A/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Melanocitos/citología , Melanocitos/metabolismo , Melanóforos/citología , Melanóforos/metabolismo , Modelos Biológicos , Mutación , Cresta Neural/citología , Cresta Neural/metabolismo , Fenotipo , Receptor de Endotelina A/genética , Transducción de Señal , Pigmentación de la Piel/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
4.
J Pathol ; 252(1): 4-21, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32652526

RESUMEN

In contrast to other cancer types, melanoma incidence has been increasing over the last 50 years, and while it still represents less than 5% of all cutaneous malignancies, melanoma accounts for the majority of skin cancer deaths, due to its propensity to metastasise. Whilst melanoma most commonly affects the skin, it can also arise in mucosal surfaces, the eye, and the brain. For new therapies to be developed, a better understanding of the genetic landscape, signalling pathways, and tumour-microenvironmental interactions is needed. This is where animal models are of critical importance. The mouse is the foremost used model of human melanoma. Arguably this is due to its plethora of benefits as a laboratory animal; however, it is important to note that unlike humans, melanocytes are not present at the dermal-epidermal junction in mice and mice do not develop melanoma without genetic manipulation. In contrast, there are numerous reports of animals that spontaneously develop melanoma, ranging from sharks and parrots to hippos and monkeys. In addition, several domesticated and laboratory-bred animals spontaneously develop melanoma or UV-induced melanoma, specifically, fish, opossums, pigs, horses, cats, and dogs. In this review, we look at spontaneously occurring animal 'models' of melanoma and discuss their relevance to the different types of melanoma found in humans. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland..


Asunto(s)
Enfermedades de los Gatos/patología , Enfermedades de los Perros/patología , Enfermedades de los Peces/patología , Enfermedades de los Caballos/patología , Melanoma/veterinaria , Neoplasias Cutáneas/veterinaria , Enfermedades de los Porcinos/patología , Animales , Enfermedades de los Gatos/genética , Gatos , Enfermedades de los Perros/genética , Perros , Enfermedades de los Peces/genética , Enfermedades de los Caballos/genética , Caballos , Humanos , Melanoma/genética , Melanoma/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Porcinos , Enfermedades de los Porcinos/genética
5.
Proc Natl Acad Sci U S A ; 115(37): E8668-E8677, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150413

RESUMEN

The close integration of the MAPK, PI3K, and WNT signaling pathways underpins much of development and is deregulated in cancer. In principle, combinatorial posttranslational modification of key lineage-specific transcription factors would be an effective means to integrate critical signaling events. Understanding how this might be achieved is central to deciphering the impact of microenvironmental cues in development and disease. The microphthalmia-associated transcription factor MITF plays a crucial role in the development of melanocytes, the retinal pigment epithelium, osteoclasts, and mast cells and acts as a lineage survival oncogene in melanoma. MITF coordinates survival, differentiation, cell-cycle progression, cell migration, metabolism, and lysosome biogenesis. However, how the activity of this key transcription factor is controlled remains poorly understood. Here, we show that GSK3, downstream from both the PI3K and Wnt pathways, and BRAF/MAPK signaling converges to control MITF nuclear export. Phosphorylation of the melanocyte MITF-M isoform in response to BRAF/MAPK signaling primes for phosphorylation by GSK3, a kinase inhibited by both PI3K and Wnt signaling. Dual phosphorylation, but not monophosphorylation, then promotes MITF nuclear export by activating a previously unrecognized hydrophobic export signal. Nonmelanocyte MITF isoforms exhibit poor regulation by MAPK signaling, but instead their export is controlled by mTOR. We uncover here an unanticipated mode of MITF regulation that integrates the output of key developmental and cancer-associated signaling pathways to gate MITF flux through the import-export cycle. The results have significant implications for our understanding of melanoma progression and stem cell renewal.


Asunto(s)
Núcleo Celular/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Sistema de Señalización de MAP Quinasas , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transporte Activo de Núcleo Celular , Animales , Línea Celular Tumoral , Células Cultivadas , Células HeLa , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Factor de Transcripción Asociado a Microftalmía/genética , Mutación , Fosforilación , Unión Proteica
6.
PLoS Genet ; 13(8): e1006959, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28806732

RESUMEN

KDM2A is a histone demethylase associated with transcriptional silencing, however very little is known about its in vivo role in development and disease. Here we demonstrate that loss of the orthologue kdm2aa in zebrafish causes widespread transcriptional disruption and leads to spontaneous melanomas at a high frequency. Fish homozygous for two independent premature stop codon alleles show reduced growth and survival, a strong male sex bias, and homozygous females exhibit a progressive oogenesis defect. kdm2aa mutant fish also develop melanomas from early adulthood onwards which are independent from mutations in braf and other common oncogenes and tumour suppressors as revealed by deep whole exome sequencing. In addition to effects on translation and DNA replication gene expression, high-replicate RNA-seq in morphologically normal individuals demonstrates a stable regulatory response of epigenetic modifiers and the specific de-repression of a group of zinc finger genes residing in constitutive heterochromatin. Together our data reveal a complex role for Kdm2aa in regulating normal mRNA levels and carcinogenesis. These findings establish kdm2aa mutants as the first single gene knockout model of melanoma biology.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/genética , Melanoma/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Replicación del ADN , Modelos Animales de Enfermedad , Epigénesis Genética , Exoma , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Masculino , Mutación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Pez Cebra/embriología
7.
Development ; 142(4): 620-32, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25670789

RESUMEN

Melanocyte development provides an excellent model for studying more complex developmental processes. Melanocytes have an apparently simple aetiology, differentiating from the neural crest and migrating through the developing embryo to specific locations within the skin and hair follicles, and to other sites in the body. The study of pigmentation mutations in the mouse provided the initial key to identifying the genes and proteins involved in melanocyte development. In addition, work on chicken has provided important embryological and molecular insights, whereas studies in zebrafish have allowed live imaging as well as genetic and transgenic approaches. This cross-species approach is powerful and, as we review here, has resulted in a detailed understanding of melanocyte development and differentiation, melanocyte stem cells and the role of the melanocyte lineage in diseases such as melanoma.


Asunto(s)
Melanocitos/citología , Melanocitos/metabolismo , Animales , Humanos , Melanoma/metabolismo , Melanoma/patología , Factor de Transcripción Asociado a Microftalmía/metabolismo , Cresta Neural/citología , Células Madre/citología , Células Madre/metabolismo
8.
Nature ; 549(7672): 337-339, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28869972
9.
J Pathol ; 238(2): 152-65, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26354726

RESUMEN

Although transformation of melanocytes to melanoma is rare, the rapid growth, systemic spread, as well as the chemoresistance of melanoma present significant challenges for patient care. Here we review animal models of melanoma, including murine, canine, equine, and zebrafish models, and detail the immense contribution these models have made to our knowledge of human melanoma development, and to melanocyte biology. We also highlight the opportunities for cross-species comparative genomic studies of melanoma to identify the key molecular events that drive this complex disease.


Asunto(s)
Modelos Animales de Enfermedad , Melanoma/genética , Neoplasias Cutáneas/genética , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Perros , Predisposición Genética a la Enfermedad/genética , Genoma , Caballos , Humanos , Melanoma/terapia , Ratones , Ratones Transgénicos , Mutación/genética , Trasplante de Neoplasias , Neoplasias Cutáneas/terapia , Trasplante Heterólogo , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/terapia , Pez Cebra
10.
Nucleic Acids Res ; 41(17): 8319-31, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23828042

RESUMEN

The nonsense-mediated mRNA decay (NMD) pathway selectively degrades mRNAs harboring premature termination codons but also regulates the abundance of cellular RNAs. We sought to identify transcripts that are regulated by two novel NMD factors, DHX34 and neuroblastoma amplified sequence (NBAS), which were identified in a genome-wide RNA interference screen in Caenorhabditis elegans and later shown to mediate NMD in vertebrates. We performed microarray expression profile analysis in human cells, zebrafish embryos and C. elegans that were individually depleted of these factors. Our analysis revealed that a significant proportion of genes are co-regulated by DHX34, NBAS and core NMD factors in these three organisms. Further analysis indicates that NMD modulates cellular stress response pathways and membrane trafficking across species. Interestingly, transcripts encoding different NMD factors were sensitive to DHX34 and NBAS depletion, suggesting that these factors participate in a conserved NMD negative feedback regulatory loop, as was recently described for core NMD factors. In summary, we find that DHX34 and NBAS act in concert with core NMD factors to co-regulate a large number of endogenous RNA targets. Furthermore, the conservation of a mechanism to tightly control NMD homeostasis across different species highlights the importance of the NMD response in the control of gene expression.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Degradación de ARNm Mediada por Codón sin Sentido , ARN Helicasas/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Evolución Molecular , Perfilación de la Expresión Génica , Células HeLa , Homeostasis , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/fisiología , ARN Helicasas/antagonistas & inhibidores , ARN Mensajero/metabolismo , Transactivadores/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores
11.
Development ; 138(16): 3579-89, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21771814

RESUMEN

Coordination of cell proliferation and differentiation is crucial for tissue formation, repair and regeneration. Some tissues, such as skin and blood, depend on differentiation of a pluripotent stem cell population, whereas others depend on the division of differentiated cells. In development and in the hair follicle, pigmented melanocytes are derived from undifferentiated precursor cells or stem cells. However, differentiated melanocytes may also have proliferative capacity in animals, and the potential for differentiated melanocyte cell division in development and regeneration remains largely unexplored. Here, we use time-lapse imaging of the developing zebrafish to show that while most melanocytes arise from undifferentiated precursor cells, an unexpected subpopulation of differentiated melanocytes arises by cell division. Depletion of the overall melanocyte population triggers a regeneration phase in which differentiated melanocyte division is significantly enhanced, particularly in young differentiated melanocytes. Additionally, we find reduced levels of Mitf activity using an mitfa temperature-sensitive line results in a dramatic increase in differentiated melanocyte cell division. This supports models that in addition to promoting differentiation, Mitf also promotes withdrawal from the cell cycle. We suggest differentiated cell division is relevant to melanoma progression because the human melanoma mutation MITF(4T)(Δ)(2B) promotes increased and serial differentiated melanocyte division in zebrafish. These results reveal a novel pathway of differentiated melanocyte division in vivo, and that Mitf activity is essential for maintaining cell cycle arrest in differentiated melanocytes.


Asunto(s)
División Celular , Melanocitos/citología , Melanocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Mutación , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Humanos , Factor de Transcripción Asociado a Microftalmía/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
13.
Cell Rep ; 43(7): 114406, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38963759

RESUMEN

Cancer cellular heterogeneity and therapy resistance arise substantially from metabolic and transcriptional adaptations, but how these are interconnected is poorly understood. Here, we show that, in melanoma, the cancer stem cell marker aldehyde dehydrogenase 1A3 (ALDH1A3) forms an enzymatic partnership with acetyl-coenzyme A (CoA) synthetase 2 (ACSS2) in the nucleus to couple high glucose metabolic flux with acetyl-histone H3 modification of neural crest (NC) lineage and glucose metabolism genes. Importantly, we show that acetaldehyde is a metabolite source for acetyl-histone H3 modification in an ALDH1A3-dependent manner, providing a physiologic function for this highly volatile and toxic metabolite. In a zebrafish melanoma residual disease model, an ALDH1-high subpopulation emerges following BRAF inhibitor treatment, and targeting these with an ALDH1 suicide inhibitor, nifuroxazide, delays or prevents BRAF inhibitor drug-resistant relapse. Our work reveals that the ALDH1A3-ACSS2 couple directly coordinates nuclear acetaldehyde-acetyl-CoA metabolism with specific chromatin-based gene regulation and represents a potential therapeutic vulnerability in melanoma.

14.
Development ; 142(7): 1387, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25804742
15.
J Pathol ; 227(4): 381-4, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22611003

RESUMEN

Non-cancerous immune cells can significantly contribute to tumour progression and metastases. Neutrophils associated with tumours can both promote and inhibit tumour progression, but less is known about how non-associated immune cells contribute to cancer biology. In a recent issue of the Journal of Pathology, He and colleagues use non-invasive, high-resolution imaging of the whole living animal to provide a compelling glimpse at how physiological migration of neutrophils can prepare a metastatic niche and how their activities can be altered by the unintended consequences of targeted therapeutics.


Asunto(s)
Modelos Animales de Enfermedad , Metástasis de la Neoplasia/fisiopatología , Neutrófilos/fisiología , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra/embriología , Animales , Humanos
16.
Nucleic Acids Res ; 39(9): 3686-94, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21227923

RESUMEN

The nonsense-mediated mRNA decay (NMD) pathway is a highly conserved surveillance mechanism that is present in all eukaryotes. It prevents the synthesis of truncated proteins by selectively degrading mRNAs harbouring premature termination codons (PTCs). The core NMD effectors were originally identified in genetic screens in Saccharomyces cerevisae and in the nematode Caenorhabditis elegans, and subsequently by homology searches in other metazoans. A genome-wide RNAi screen in C. elegans resulted in the identification of two novel NMD genes that are essential for proper embryonic development. Their human orthologues, DHX34 and NAG/NBAS, are required for NMD in human cells. Here, we find that the zebrafish genome encodes orthologues of DHX34 and NAG/NBAS. We show that the morpholino-induced depletion of zebrafish Dhx34 and Nbas proteins results in severe developmental defects and reduced embryonic viability. We also found that Dhx34 and Nbas are required for degradation of PTC-containing mRNAs in zebrafish embryos. The phenotypes observed in both Dhx34 and Nbas morphants are similar to defects in Upf1, Smg-5- or Smg-6- depleted embryos, suggesting that these factors affect the same pathway and confirming that zebrafish embryogenesis requires an active NMD pathway.


Asunto(s)
Codón sin Sentido , Desarrollo Embrionario/genética , ARN Helicasas/fisiología , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Pez Cebra/fisiología , Animales , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Dis Model Mech ; 16(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37522272

RESUMEN

Modelling adult diseases to understand their aetiology and progression, and to develop new therapies, is a major challenge for medical biology. We are excited by new efforts in the zebrafish community to develop models of adult diseases that range from cancer to heart, infectious and age-related diseases, and those that relate to toxicology and complex social behaviours. Here, we discuss some of the advances in the field of zebrafish models of adult disease, and where we see opportunities and challenges ahead.


Asunto(s)
Neoplasias , Pez Cebra , Animales , Humanos , Adulto , Conducta Social , Corazón , Modelos Animales de Enfermedad
18.
Nat Commun ; 14(1): 6051, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770430

RESUMEN

The ability of transcription factors to discriminate between different classes of binding sites associated with specific biological functions underpins effective gene regulation in development and homeostasis. How this is achieved is poorly understood. The microphthalmia-associated transcription factor MITF is a lineage-survival oncogene that plays a crucial role in melanocyte development and melanoma. MITF suppresses invasion, reprograms metabolism and promotes both proliferation and differentiation. How MITF distinguishes between differentiation and proliferation-associated targets is unknown. Here we show that compared to many transcription factors MITF exhibits a very long residence time which is reduced by p300/CBP-mediated MITF acetylation at K206. While K206 acetylation also decreases genome-wide MITF DNA-binding affinity, it preferentially directs DNA binding away from differentiation-associated CATGTG motifs toward CACGTG elements. The results reveal an acetylation-mediated switch that suppresses differentiation and provides a mechanistic explanation of why a human K206Q MITF mutation is associated with Waardenburg syndrome.


Asunto(s)
Melanoma , Factor de Transcripción Asociado a Microftalmía , Humanos , Línea Celular Tumoral , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Acetilación , Melanoma/genética , Melanoma/metabolismo , Melanocitos/metabolismo
19.
J Invest Dermatol ; 143(6): 1042-1051.e3, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36566878

RESUMEN

Phakomatosis pigmentovascularis is a diagnosis that denotes the coexistence of pigmentary and vascular birthmarks of specific types, accompanied by variable multisystem involvement, including CNS disease, asymmetrical growth, and a predisposition to malignancy. Using a tight phenotypic group and high-depth next-generation sequencing of affected tissues, we discover here clonal mosaic variants in gene PTPN11 encoding SHP2 phosphatase as a cause of phakomatosis pigmentovascularis type III or spilorosea. Within an individual, the same variant is found in distinct pigmentary and vascular birthmarks and is undetectable in blood. We go on to show that the same variants can cause either the pigmentary or vascular phenotypes alone, and drive melanoma development within pigmentary lesions. Protein structure modeling highlights that although variants lead to loss of function at the level of the phosphatase domain, resultant conformational changes promote longer ligand binding. In vitro modeling of the missense variants confirms downstream MAPK pathway overactivation and widespread disruption of human endothelial cell angiogenesis. Importantly, patients with PTPN11 mosaicism theoretically risk passing on the variant to their children as the germline RASopathy Noonan syndrome with lentigines. These findings improve our understanding of the pathogenesis and biology of nevus spilus and capillary malformation syndromes, paving the way for better clinical management.


Asunto(s)
Lentigo , Melanoma , Síndromes Neurocutáneos , Niño , Humanos , Síndromes Neurocutáneos/genética , Síndromes Neurocutáneos/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Mosaicismo , Melanoma/genética
20.
Hum Mol Genet ; 19(4): 657-70, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19955120

RESUMEN

Mutations in the human RPGR gene cause one of the most common and severe forms of inherited retinal dystrophy, but the function of its protein product remains unclear. We have identified two genes resembling human RPGR (ZFRPGR1, ZFRPGR2) in zebrafish (Danio rerio), both of which are expressed within the nascent and adult eye as well as more widely during development. ZFRPGR2 appears to be functionally orthologous to human RPGR, because it encodes similar protein isoforms (ZFRPGR2(ORF15), ZFRPGR2(ex1-17)) and causes developmental defects similar to other ciliary proteins, affecting gastrulation, tail and head development after morpholino-induced knockdown (translation suppression). These defects are consistent with a ciliary function and were rescued by human RPGR but not by RPGR mutants causing retinal dystrophy. Unlike mammals, RPGR knockdown in zebrafish resulted in both abnormal development and increased cell death in the dysplastic retina. Developmental abnormalities in the eye included lamination defects, failure to develop photoreceptor outer segments and a small eye phenotype, associated with increased cell death throughout the retina. These defects could be rescued by expression of wild-type but not mutant forms of human RPGR. ZFRPGR2 knockdown also resulted in an intracellular transport defect affecting retrograde but not anterograde transport of organelles. ZFRPGR2 is therefore necessary both for the normal differentiation and lamination of the retina and to prevent apoptotic retinal cell death, which may relate to its proposed role in dynein-based retrograde transport processes.


Asunto(s)
Dineínas/metabolismo , Proteínas del Ojo/metabolismo , Retina/crecimiento & desarrollo , Enfermedades de la Retina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Apoptosis , Muerte Celular , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Técnicas de Silenciamiento del Gen , Humanos , Transporte de Proteínas , Retina/anomalías , Retina/citología , Retina/metabolismo , Enfermedades de la Retina/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA