Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 364, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842723

RESUMEN

Beauveria bassiana (Bal.-Criv.) is an important entomopathogenic fungus being used for the management of various agricultural pests worldwide. However, all strains of B. bassiana may not be effective against whitefly, Bemisia tabaci, or other pests, and strains show diversity in their growth, sporulation, virulence features, and overall bioefficacy. Thus, to select the most effective strain, a comprehensive way needs to be devised. We studied the diversity among the 102 strains of B. bassiana isolated from 19 insect species based on their physiological features, virulence, and molecular phylogeny, to identify promising ones for the management of B. tabaci. Strains showed diversity in mycelial growth, conidial production, and their virulence against B. tabaci nymphs. The highest nymphal mortality (2nd and 3rd instar) was recorded with MTCC-4511 (95.1%), MTCC-6289 (93.8%), and MTCC-4565 (89.9%) at a concentration of 1 × 106 conidia ml-1 under polyhouse conditions. The highest bioefficacy index (BI) was in MTCC-4511 (78.3%), MTCC-4565 (68.2%), and MTCC-4543 (62.1%). MTCC-4511, MTCC-4565, and MTCC-4543 clustered with positive loading of eigenvalues for the first two principal components and the cluster analysis also corresponded well with PCA (principal component analysis) (nymphal mortality and BI). The molecular phylogeny could not draw any distinct relationship between physiological features, the virulence of B. bassiana strains with the host and location. The BI, PCA, and square Euclidean distance cluster were found the most useful tools for selecting potential entomopathogenic strains. The selected strains could be utilized for the management of the B. tabaci nymphal population in the field through the development of effective formulations. KEY POINTS: • 102 B. bassiana strains showed diversity in growth and virulence against B. tabaci. • Bioefficacy index, PCA, and SED group are efficient tools for selecting potential strains. • MTCC-4511, 4565, and 4543 chosen as the most virulent strains to kill whitefly nymphs.


Asunto(s)
Beauveria , Gossypium , Hemípteros , Control Biológico de Vectores , Filogenia , Beauveria/genética , Beauveria/patogenicidad , Beauveria/clasificación , Beauveria/aislamiento & purificación , Animales , Hemípteros/microbiología , Virulencia , Gossypium/microbiología , Ninfa/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Variación Genética
2.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35886973

RESUMEN

Making statistical inference on quantities defining various characteristics of a temporally measured biochemical process and analyzing its variability across different experimental conditions is a core challenge in various branches of science. This problem is particularly difficult when the amount of data that can be collected is limited in terms of both the number of replicates and the number of time points per process trajectory. We propose a method for analyzing the variability of smooth functionals of the growth or production trajectories associated with such processes across different experimental conditions. Our modeling approach is based on a spline representation of the mean trajectories. We also develop a bootstrap-based inference procedure for the parameters while accounting for possible multiple comparisons. This methodology is applied to study two types of quantities-the "time to harvest" and "maximal productivity"-in the context of an experiment on the production of recombinant proteins. We complement the findings with extensive numerical experiments comparing the effectiveness of different types of bootstrap procedures for various tests of hypotheses. These numerical experiments convincingly demonstrate that the proposed method yields reliable inference on complex characteristics of the processes even in a data-limited environment where more traditional methods for statistical inference are typically not reliable.


Asunto(s)
Proyectos de Investigación , Proteínas Recombinantes/genética
3.
J Stat Plan Inference ; 220: 15-23, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37089275

RESUMEN

We study variance estimation and associated confidence intervals for parameters characterizing genetic effects from genome-wide association studies (GWAS) in misspecified mixed model analysis. Previous studies have shown that, in spite of the model misspecification, certain quantities of genetic interests are consistently estimable, and consistent estimators of these quantities can be obtained using the restricted maximum likelihood (REML) method under a misspecified linear mixed model. However, the asymptotic variance of such a REML estimator is complicated and not ready to be implemented for practical use. In this paper, we develop practical and computationally convenient methods for estimating such asymptotic variances and constructing the associated confidence intervals. Performance of the proposed methods is evaluated empirically based on Monte-Carlo simulations and real-data application.

4.
Proc IEEE Inst Electr Electron Eng ; 106(8): 1277-1292, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30287970

RESUMEN

When the data are high dimensional, widely used multivariate statistical methods such as principal component analysis can behave in unexpected ways. In settings where the dimension of the observations is comparable to the sample size, upward bias in sample eigenvalues and inconsistency of sample eigenvectors are among the most notable phenomena that appear. These phenomena, and the limiting behavior of the rescaled extreme sample eigenvalues, have recently been investigated in detail under the spiked covariance model. The behavior of the bulk of the sample eigenvalues under weak distributional assumptions on the observations has been described. These results have been exploited to develop new estimation and hypothesis testing methods for the population covariance matrix. Furthermore, partly in response to these phenomena, alternative classes of estimation procedures have been developed by exploiting sparsity of the eigenvectors or the covariance matrix. This paper gives an orientation to these areas.

5.
Stat Sin ; 28(1): 423-447, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29422761

RESUMEN

We consider modeling non-autonomous dynamical systems for a group of subjects. The proposed model involves a common baseline gradient function and a multiplicative time-dependent subject-specific effect that accounts for phase and amplitude variations in the rate of change across subjects. The baseline gradient function is represented in a spline basis and the subject-specific effect is modeled as a polynomial in time with random coefficients. We establish appropriate identifiability conditions and propose an estimator based on the hierarchical likelihood. We prove consistency and asymptotic normality of the proposed estimator under a regime of moderate-to-dense observations per subject. Simulation studies and an application to the Berkeley Growth Data demonstrate the effectiveness of the proposed methodology.

6.
PeerJ ; 12: e17476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974414

RESUMEN

The whitefly, Bemisia tabaci (Gennadius), is a polyphagous and major pest of cotton worldwide. Both adults and nymphs of B. tabaci affect the crop by causing direct and indirect damage. A severe whitefly outbreak was experienced during 2015 on cotton in North India and this was followed by a profound infestation during 2022. The present research rigorously examined whether the proliferation in the whitefly population was an outbreak or the result of a multi factor resurgence. During 2015, whitefly counts remained above the economic threshold level (ETL) between 28th and 35th Standard Meteorological Week (SMW). However, during 2022 above ETL population was observed in 27th SMW and it persisted until 36th SMW. The peak incidence of the whitefly was noticed during 31st and 29th SMW in 2015 and 2022, respectively. The early pest build up in 2022 and longer persistence (≥10 weeks) over the cotton season resulted in more damage to cotton crop. Additionally, pest survillence across the zone on the farmers' fields during 2022 revealed 44.4 per cent spots (585 out of 1,317 locations) above ETL while the corresponding locations in 2015 was 57% (620 out of 1,089). Thus, in 2022 infestation was not uniform in the entire zone wherein only few blocks of Punjab, Haryana and Rajasthan states of India experienced severe infestations of the whitefly. This study reports the complex of factors including weather, delayed sowing, use of tank mixtures/ subleathal doses of insecticides, pest resurgence etc. that might have possibly contributed to these upsurges in whitefly on cotton in north India.


Asunto(s)
Gossypium , Hemípteros , Animales , India/epidemiología , Gossypium/parasitología , Estaciones del Año , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/estadística & datos numéricos
7.
Ann Stat ; 41(3): 1055-1084, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25324581

RESUMEN

We study the problem of estimating the leading eigenvectors of a high-dimensional population covariance matrix based on independent Gaussian observations. We establish a lower bound on the minimax risk of estimators under the l2 loss, in the joint limit as dimension and sample size increase to infinity, under various models of sparsity for the population eigenvectors. The lower bound on the risk points to the existence of different regimes of sparsity of the eigenvectors. We also propose a new method for estimating the eigenvectors by a two-stage coordinate selection scheme.

8.
Sci Rep ; 12(1): 2253, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145115

RESUMEN

The evolution of the COVID-19 pandemic is described through a time-dependent stochastic dynamic model in discrete time. The proposed multi-compartment model is expressed through a system of difference equations. Information on the social distancing measures and diagnostic testing rates are incorporated to characterize the dynamics of the various compartments of the model. In contrast with conventional epidemiological models, the proposed model involves interpretable temporally static and dynamic epidemiological rate parameters. A model fitting strategy built upon nonparametric smoothing is employed for estimating the time-varying parameters, while profiling over the time-independent parameters. Confidence bands of the parameters are obtained through a residual bootstrap procedure. A key feature of the methodology is its ability to estimate latent unobservable compartments such as the number of asymptomatic but infected individuals who are known to be the key vectors of COVID-19 spread. The nature of the disease dynamics is further quantified by relevant epidemiological markers that make use of the estimates of latent compartments. The methodology is applied to understand the true extent and dynamics of the pandemic in various states within the United States (US).


Asunto(s)
COVID-19/epidemiología , Modelos Teóricos , COVID-19/diagnóstico , COVID-19/transmisión , Prueba de COVID-19 , Humanos , Estudios Seroepidemiológicos , Estados Unidos/epidemiología
9.
Data Brief ; 38: 107317, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34485647

RESUMEN

This data article is related to the research article, "M.J. McNulty, K. Kelada, D. Paul, S. Nandi, and K.A. McDonald, Introducing uncertainty quantification to techno-economic models of manufacturing field-grown plant-made products, Food Bioprod. Process. 128 (2021) 153-165." The raw and analyzed data presented are related to generation, analysis, and optimization of ultra-large-scale field-grown plant-based manufacturing of high-value recombinant protein under uncertainty. The data have been acquired using deterministic techno-economic process model simulation in SuperPro Designer integrated with stochastic Monte Carlo-based simulation in Microsoft Excel using the Crystal Ball plug-in. The purpose of the article is to make techno-economic and associated uncertainty data available to be leveraged and adapted for other research purposes.

10.
J Geophys Res Space Phys ; 126(9): e2021JA029196, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35846731

RESUMEN

The most dynamic electromagnetic coupling between the magnetosphere and ionosphere occurs in the polar upper atmosphere. It is critical to quantify the electromagnetic energy and momentum input associated with this coupling as its impacts on the ionosphere and thermosphere system are global and major, often leading to considerable disturbances in near-Earth space environments. The current general circulation models of the upper atmosphere exhibit systematic biases that can be attributed to an inadequate representation of the Joule heating rate resulting from unaccounted stochastic fluctuations of electric fields associated with the magnetosphere-ionosphere coupling. These biases exist regardless of geomagnetic activity levels. To overcome this limitation, a new multiresolution random field modeling approach is developed, and the efficacy of the approach is demonstrated using Super Dual Auroral Radar Network (SuperDARN) data carefully curated for the study during a largely quiet 4-hour period on February 29, 2012. Regional small-scale electrostatic fields sampled at different resolutions from a probabilistic distribution of electric field variability conditioned on actual SuperDARN LOS observations exhibit considerably more localized fine-scale features in comparison to global large-scale fields modeled using the SuperDARN Assimilative Mapping procedure. The overall hemispherically integrated Joule heating rate is increased by a factor of about 1.5 due to the effect of random regional small-scale electric fields, which is close to the lower end of arbitrarily adjusted Joule heating multiplicative factor of 1.5 and 2.5 typically used in upper atmosphere general circulation models. The study represents an important step toward a data-driven ensemble modeling of magnetosphere-ionosphere-atmosphere coupling processes.

11.
Sankhya Ser B ; 80(2): 369-394, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31686722

RESUMEN

We consider the problem of estimating the trend for a spatial random process model expressed as Z(x) = µ(x) + ε(x) + δ(x), where the trend µ is a smooth random function, ε(x) is a mean zero, stationary random process, and {δ(x)} are assumed to be i.i.d. noise with zero mean. We propose a new model for stochastic trend in ℝ d by generalizing the notion of a structural model for trend in time series. We estimate the stochastic trend nonparametrically using a local linear regression method and derive the asymptotic mean squared error of the trend estimate under the proposed model for trend. Our results show that the asymptotic mean squared error for the stochastic trend is of the same order of magnitude as that of a deterministic trend of comparable complexity. This result suggests from the point of view of estimation under stationary noise, it is immaterial whether the trend is treated as deterministic or stochastic. Moreover, we show that the rate of convergence of the estimator is determined by the degree of decay of the correlation function of the stationary process ε(x) and this rate can be different from the usual rate of convergence found in the literature on nonparametric function estimation. We also propose a data dependent selection procedure for the bandwidth parameter which is based on a generalization of Mallow's C p criterion. We illustrate the methodology by simulation studies and by analyzing a data on surface temperature anomalies.

12.
Med Image Anal ; 46: 57-72, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29502033

RESUMEN

We present a novel method for estimation of the fiber orientation distribution (FOD) function based on diffusion-weighted magnetic resonance imaging (D-MRI) data. We formulate the problem of FOD estimation as a regression problem through spherical deconvolution and a sparse representation of the FOD by a spherical needlets basis that forms a multi-resolution tight frame for spherical functions. This sparse representation allows us to estimate the FOD by ℓ1-penalized regression under a non-negativity constraint on the estimated FOD. The resulting convex optimization problem is solved by an alternating direction method of multipliers (ADMM) algorithm. The proposed method leads to a reconstruction of the FOD that is accurate, has low variability and preserves sharp features. Through extensive experiments, we demonstrate the effectiveness and favorable performance of the proposed method compared to three existing methods. Specifically, we demonstrate that the proposed method is able to successfully resolve fiber crossings at small angles and automatically identify isotropic diffusion. We also apply the proposed method to real 3T D-MRI data sets of healthy individuals. The results show realistic depictions of crossing fibers that are more accurate, less noisy, and lead to superior tractography results compared to competing methods.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Conectoma , Imagen de Difusión por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Fibras Nerviosas/ultraestructura , Algoritmos , Simulación por Computador , Humanos
13.
Ann Appl Stat ; 12(1): 459-489, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31687059

RESUMEN

Gaussian random fields have been one of the most popular tools for analyzing spatial data. However, many geophysical and environmental processes often display non-Gaussian characteristics. In this paper, we propose a new class of spatial models for non-Gaussian random fields on a sphere based on a multi-resolution analysis. Using a special wavelet frame, named spherical needlets, as building blocks, the proposed model is constructed in the form of a sparse random effects model. The spatial localization of needlets, together with carefully chosen random coefficients, ensure the model to be non-Gaussian and isotropic. The model can also be expanded to include a spatially varying variance profile. The special formulation of the model enables us to develop efficient estimation and prediction procedures, in which an adaptive MCMC algorithm is used. We investigate the accuracy of parameter estimation of the proposed model, and compare its predictive performance with that of two Gaussian models by extensive numerical experiments. Practical utility of the proposed model is demonstrated through an application of the methodology to a data set of high-latitude ionospheric electrostatic potentials, generated from the LFM-MIX model of the magnetosphere-ionosphere system.

14.
Ann Appl Stat ; 10(3): 1137-1156, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28638497

RESUMEN

Diffusion magnetic resonance imaging is an imaging technology designed to probe anatomical architectures of biological samples in an in vivo and noninvasive manner through measuring water diffusion. The contribution of this paper is threefold. First, it proposes a new method to identify and estimate multiple diffusion directions within a voxel through a new and identifiable parametrization of the widely used multi-tensor model. Unlike many existing methods, this method focuses on the estimation of diffusion directions rather than the diffusion tensors. Second, this paper proposes a novel direction smoothing method which greatly improves direction estimation in regions with crossing fibers. This smoothing method is shown to have excellent theoretical and empirical properties. Last, this paper develops a fiber tracking algorithm that can handle multiple directions within a voxel. The overall methodology is illustrated with simulated data and a data set collected for the study of Alzheimer's disease by the Alzheimer's Disease Neuroimaging Initiative (ADNI).

15.
Electron J Stat ; 7: 1913-1956, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25419264

RESUMEN

Diffusion tensor magnetic resonance imaging (MRI) quantifies the spatial distribution of water Diffusion at each voxel on a regular grid of locations in a biological specimen by Diffusion tensors- 3 × 3 positive definite matrices. Removal of noise from DTI is an important problem due to the high scientific relevance of DTI and relatively low signal to noise ratio it provides. Leading approaches to this problem amount to estimation of weighted Karcher means of Diffusion tensors within spatial neighborhoods, under various metrics imposed on the space of tensors. However, it is unclear how the behavior of these estimators varies with the magnitude of DTI sensor noise (the noise resulting from the thermal e!ects of MRI scanning) as well as the geometric structure of the underlying Diffusion tensor neighborhoods. In this paper, we combine theoretical analysis, empirical analysis of simulated DTI data, and empirical analysis of real DTI scans to compare the noise removal performance of three kernel-based DTI smoothers that are based on Euclidean, log-Euclidean, and affine-invariant metrics. The results suggest, contrary to conventional wisdom, that imposing a simplistic Euclidean metric may in fact provide comparable or superior noise removal, especially in relatively unstructured regions and/or in the presence of moderate to high levels of sensor noise. On the contrary, log-Euclidean and affine-invariant metrics may lead to better noise removal in highly structured anatomical regions, especially when the sensor noise is of low magnitude. These findings emphasize the importance of considering the interplay of sensor noise magnitude and tensor field geometric structure when assessing Diffusion tensor smoothing options. They also point to the necessity for continued development of smoothing methods that perform well across a large range of scenarios.

16.
Artículo en Inglés | MEDLINE | ID: mdl-23365840

RESUMEN

Diffusion tensor magnetic resonance imaging (DTI), a method for measuring the integrity of axon fiber tracts in the brain, plays an important role in clarifying brain changes that accompany aging and aging-associated neurodegenerative disease. While DTI smoothing methods theoretically have the potential to enhance such studies by reducing noise, it is unclear whether DTI smoothing has any practical impact on computed associations between fiber tract integrity and scientific variables of interest. Therefore we smoothed DTI images from 154 older adults using three kernel smoothing methods hypothesized to have differing strengths (the affine and log-Euclidean smoothers were hypothesized to enhance highly organized tracts better than the Euclidean smoother). Smoothing increased the strengths of expected associations between DTI and age, cognitive function, and the diagnosis of dementia. However, no particular smoothing method was uniformly superior in strengthening these associations. This data suggests that DTI smoothing enhances the sensitivity of studies of brain aging, but further research is needed to determine which smoothing technique is optimal.


Asunto(s)
Envejecimiento , Encéfalo/diagnóstico por imagen , Demencia/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Adulto , Axones/diagnóstico por imagen , Humanos , Masculino , Radiografía , Sensibilidad y Especificidad
17.
J Am Stat Assoc ; 106(496): 1345-1360, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23997374

RESUMEN

Recent proteomic studies have identified proteins related to specific phenotypes. In addition to marginal association analysis for individual proteins, analyzing pathways (functionally related sets of proteins) may yield additional valuable insights. Identifying pathways that differ between phenotypes can be conceptualized as a multivariate hypothesis testing problem: whether the mean vector µ of a p-dimensional random vector X is µ0 . Proteins within the same biological pathway may correlate with one another in a complicated way, and type I error rates can be inflated if such correlations are incorrectly assumed to be absent. The inflation tends to be more pronounced when the sample size is very small or there is a large amount of missingness in the data, as is frequently the case in proteomic discovery studies. To tackle these challenges, we propose a regularized Hotelling's T2 (RHT) statistic together with a non-parametric testing procedure, which effectively controls the type I error rate and maintains good power in the presence of complex correlation structures and missing data patterns. We investigate asymptotic properties of the RHT statistic under pertinent assumptions and compare the test performance with four existing methods through simulation examples. We apply the RHT test to a hormone therapy proteomics data set, and identify several interesting biological pathways for which blood serum concentrations changed following hormone therapy initiation.

19.
Cytometry A ; 71(5): 308-16, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17323352

RESUMEN

BACKGROUND: The presently available cell motility-analyzers measure primarily the "horizontal" velocity and there is no instrument available for "vertical" velocity measurement. This development was based on the turbidimetric method of sperm motility analysis. METHODS: Sperm was layered at the bottom of the cuvette containing buffer solution and exposed to the spectrophotometric light path at different heights to track the vertically moving sperms. The vertical movement was materialized with the development of an electromechanical up-down movement devise for the cuvette accomplished with the help of a cuvette holder-stepper motor-computer assembly. The entire system was controlled by the necessary motion control, data acquisition, and data processing software developed for cuvette movement and data analysis. RESULTS: Using goat sperm as the model a unique computer-based spectrophotometric system has been developed for the first time to determine the average "vertical" velocity of motile cells. CONCLUSIONS: Undertaking upward movement against gravity is much tougher as compared with horizontal movement. Consequently average vertical velocity is expected to be a much better identifying parameter for assessing semen and other motile cell quality. The novel instrumental system developed by us has thus the potential for immense application in human infertility clinics, animal-breeding centres, centres for conservation of endangered species, and also for research work on vertical velocity of spermatozoa and other motile cells, such as bacteria, protozoa, etc.


Asunto(s)
Espectrofotometría/instrumentación , Espectrofotometría/métodos , Motilidad Espermática , Espermatozoides/citología , Animales , Cabras , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA