RESUMEN
ZMIZ1 is a coactivator of several transcription factors, including p53, the androgen receptor, and NOTCH1. Here, we report 19 subjects with intellectual disability and developmental delay carrying variants in ZMIZ1. The associated features include growth failure, feeding difficulties, microcephaly, facial dysmorphism, and various other congenital malformations. Of these 19, 14 unrelated subjects carried de novo heterozygous single-nucleotide variants (SNVs) or single-base insertions/deletions, 3 siblings harbored a heterozygous single-base insertion, and 2 subjects had a balanced translocation disrupting ZMIZ1 or involving a regulatory region of ZMIZ1. In total, we identified 13 point mutations that affect key protein regions, including a SUMO acceptor site, a central disordered alanine-rich motif, a proline-rich domain, and a transactivation domain. All identified variants were absent from all available exome and genome databases. In vitro, ZMIZ1 showed impaired coactivation of the androgen receptor. In vivo, overexpression of ZMIZ1 mutant alleles in developing mouse brains using in utero electroporation resulted in abnormal pyramidal neuron morphology, polarization, and positioning, underscoring the importance of ZMIZ1 in neural development and supporting mutations in ZMIZ1 as the cause of a rare neurodevelopmental syndrome.
Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Mutación Puntual , Factores de Transcripción/genética , Alelos , Animales , Niño , Preescolar , Discapacidades del Desarrollo/patología , Femenino , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Ratones , Síndrome , Factores de Transcripción/química , Factores de Transcripción/metabolismoRESUMEN
Infection with human BK polyomavirus, a small double-stranded DNA virus, potentially results in severe complications in immunocompromised patients. Here, we describe the in vivo variability and evolution of the BK polyomavirus by deep sequencing. Our data reveal the highest genomic evolutionary rate described in double-stranded DNA viruses, i.e., 10(-3)-10(-5) substitutions per nucleotide site per year. High mutation rates in viruses allow their escape from immune surveillance and adaptation to new hosts. By combining mutational landscapes across viral genomes with in silico prediction of viral peptides, we demonstrate the presence of significantly more coding substitutions within predicted cognate HLA-C-bound viral peptides than outside. This finding suggests a role for HLA-C in antiviral immunity, perhaps through the action of killer cell immunoglobulin-like receptors. The present study provides a comprehensive view of viral evolution and immune escape in a DNA virus.
Asunto(s)
Virus BK/genética , Antígenos HLA-C/metabolismo , Mutación , Trasplante de Órganos , Fragmentos de Péptidos/metabolismo , Infecciones por Polyomavirus/virología , Sustitución de Aminoácidos , Virus BK/inmunología , Genoma Viral , Antígenos HLA-C/genética , Antígenos HLA-C/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Filogenia , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/inmunologíaRESUMEN
The association of primary Sjögren's syndrome (pSS) with Major Histocompatibility Complex (MHC) alleles is quintessential of MHC-disease associations. Indeed, although disease associations with classical HLA class I and II alleles/haplotypes are amply documented, further dissection is often prevented by the strong linkage disequilibrium across the entire MHC complex. Here we study the association of pSS, not with HLA genes, but with the non-conventional MHC encoded class I gene, MICA (MHC class I chain-related gene A). MICA is selectively expressed within epithelia, and is the major ligand for the activatory receptor, NKG2D, both attributes relevant to pSS' etiology. MICA-pSS association was studied in two independent (French and UK) cohorts representing a total of 959 cases and 1,043 controls. MICA*008 allele was shown to be significantly associated with pSS (pcor=2.61 × 10-35). A multivariate logistic regression showed that this association was independent of all major known MHC-linked risk loci/alleles, as well as other relevant candidate loci that are in linkage disequilibrium with MICA*008 i.e. HLA-B*08:01, rs3131619 (T), MICB*008, TNF308A, HLA-DRB1*03:01 and HLA-DRB1*15:01 (P = 1.84 × 10-04). Furthermore, independently of the MICA*008 allele, higher levels of soluble MICA proteins were detected in sera of pSS patients compared to healthy controls. This study hence defines MICA as a new, MHC-linked, yet HLA-independent, pSS risk locus and opens a new front in our understanding of the still enigmatic pathophysiology of this disease. The fact that the soluble MICA protein is further amplified in MICA*008 carrying individuals, might also be relevant in other auto-immune diseases and cancer.
Asunto(s)
Antígenos de Histocompatibilidad Clase I/genética , Síndrome de Sjögren/genética , Adulto , Alelos , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad , Antígenos HLA-B/genética , Cadenas HLA-DRB1/genética , Haplotipos , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Desequilibrio de Ligamiento , Complejo Mayor de Histocompatibilidad/genética , Masculino , Persona de Mediana Edad , Polimorfismo Genético , Población Blanca/genéticaRESUMEN
OBJECTIVES: The objective of the present study was to explain why two siblings carrying both the same homozygous pathogenic mutation for the autoinflammatory disease hyper IgD syndrome, show opposite phenotypes, that is, the first being asymptomatic, the second presenting all classical characteristics of the disease. METHODS: Where single omics (mainly exome) analysis fails to identify culprit genes/mutations in human complex diseases, multiomics analyses may provide solutions, although this has been seldom used in a clinical setting. Here we combine exome, transcriptome and proteome analyses to decipher at a molecular level, the phenotypic differences between the two siblings. RESULTS: This multiomics approach led to the identification of a single gene-STAT1-which harboured a rare missense variant and showed a significant overexpression of both mRNA and protein in the symptomatic versus the asymptomatic sister. This variant was shown to be of gain of function nature, involved in an increased activation of the Janus kinase/signal transducer and activator of transcription signalling (JAK/STAT) pathway, known to play a critical role in inflammatory diseases and for which specific biotherapies presently exist. Pathway analyses based on information from differentially expressed transcripts and proteins confirmed the central role of STAT1 in the proposed regulatory network leading to an increased inflammatory phenotype in the symptomatic sibling. CONCLUSIONS: This study demonstrates the power of a multiomics approach to uncover potential clinically actionable targets for a personalised therapy. In more general terms, we provide a proteogenomics analysis pipeline that takes advantage of subject-specific genomic and transcriptomic information to improve protein identification and hence advance individualised medicine.
Asunto(s)
Genes Modificadores , Deficiencia de Mevalonato Quinasa/genética , Factor de Transcripción STAT1/genética , Adulto , Exoma , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Persona de Mediana Edad , Mutación Missense , Fenotipo , Polimorfismo de Nucleótido Simple , Proteómica/métodosRESUMEN
IMPORTANCE: Apart from Huntington's disease, little is known of the genetics of autosomal dominant chorea associated with dystonia. Here we identify adenylate cyclase 5 (ADCY5) as a likely new causal gene for early-onset chorea and dystonia. OBSERVATIONS: Whole exome sequencing in a three-generation family affected with autosomal dominant chorea associated with dystonia identified a single de novo mutationc.2088+1G>A in a 5' donor splice-site of ADCY5segregating with the disease. This mutation seeming leads to RNA instability and therefore ADCY5 haploinsufficiency. CONCLUSIONS AND RELEVANCE: Our finding confirms the genetic/clinical heterogeneity of the disorder; corroborated by previous identification of ADCY5 mutations in one family with dyskinesia-facial myokymia and in two unrelated sporadic cases of paxoysmal choreic/dystonia-facial myokymia; ADCY5's high expression in the striatum and movement disorders in ADCY5-deficient mice. Hence ADCY5 genetic analyses may be relevant in the diagnostic workup of unexplained early-onset hyperkinetic movement disorders.
Asunto(s)
Adenilil Ciclasas/genética , Corea/genética , Trastornos Distónicos/genética , Salud de la Familia , Mutación/genética , Adolescente , Adulto , Análisis Mutacional de ADN , Femenino , Humanos , MasculinoRESUMEN
Noonan syndrome (NS), an autosomal dominant multisystem disorder, is caused by the dysregulation of the RAS-MAPK pathway and is characterized by short stature, heart defects, pectus excavatum, webbed neck, learning problems, cryptorchidism and facial dysmorphism. We here present the clinical and molecular characterization of a family with NS and multiple giant cell lesions (MGCLs). The proband is a 12-year-old girl with NS and MGCL. Her mother shows typical NS without MGCL. Whole-exome sequencing of the girl, her mother and her healthy maternal grand parents revealed a previously unobserved mutation in exon 5 of the PTPN11 gene (c.598 A>T; p.N200Y), transmitted from the mother to the proband. As no other modification in the RAS-MAPK pathway genes as related to Rasopathies was detected in the proband, this report demonstrates for the first time that a unique mutation affecting this, otherwise unaffected signaling route, can cause both NS and NS/MGCL in the same family. This observation further confirms that NS/MGCL is not a distinct entity but rather that MGCL represents a rare complication of NS. Moreover, the localization of the p.N200Y mutation suggests an alternative molecular mechanism for the excessive phosphatase activity of the PTPN11-encoded protein.
Asunto(s)
Células Gigantes/patología , Mutación , Síndrome de Noonan/genética , Síndrome de Noonan/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Dominios Homologos src/genética , Biopsia , Niño , Análisis Mutacional de ADN , Exoma , Facies , Femenino , Humanos , Masculino , Fenotipo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Membrana Sinovial/metabolismo , Membrana Sinovial/patologíaRESUMEN
SRC-3 is an important coactivator of nuclear receptors including the retinoic acid (RA) receptor α. Most of SRC-3 functions are facilitated by changes in the posttranslational code of the protein that involves mainly phosphorylation and ubiquitination. We recently reported that SRC-3 is degraded by the proteasome in response to RA. Here, by using an RNAi E3-ubiquitin ligase entry screen, we identified CUL-3 and RBX1 as components of the E3 ubiquitin ligase involved in the RA-induced ubiquitination and subsequent degradation of SRC-3. We also show that the RA-induced ubiquitination of SRC-3 depends on its prior phosphorylation at serine 860 that promotes binding of the CUL-3-based E3 ligase in the nucleus. Finally, phosphorylation, ubiquitination, and degradation of SRC-3 cooperate to control the dynamics of transcription. In all, this process participates to the antiproliferative effect of RA.
Asunto(s)
Proteínas Cullin/metabolismo , Coactivador 3 de Receptor Nuclear/metabolismo , Tretinoina/química , Ubiquitina/química , Animales , Sitios de Unión , Células COS , Diferenciación Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Chlorocebus aethiops , Cromatina/química , Humanos , Microscopía Fluorescente/métodos , Fosforilación , Transcripción GenéticaRESUMEN
Despite abundant evidence demonstrating that platelets foster metastasis, anti-platelet agents have low therapeutic potential due to the risk of hemorrhages. In addition, whether platelets can regulate metastasis at the late stages of the disease remains unknown. In this study, we subject syngeneic models of metastasis to various thrombocytopenic regimes to show that platelets provide a biphasic contribution to metastasis. While potent intravascular binding of platelets to tumor cells efficiently promotes metastasis, platelets further support the outgrowth of established metastases via immune suppression. Genetic depletion and pharmacological targeting of the glycoprotein VI (GPVI) platelet-specific receptor in humanized mouse models efficiently reduce the growth of established metastases, independently of active platelet binding to tumor cells in the bloodstream. Our study demonstrates therapeutic efficacy when targeting animals bearing growing metastases. It further identifies GPVI as a molecular target whose inhibition can impair metastasis without inducing collateral hemostatic perturbations.
Asunto(s)
Plaquetas , Metástasis de la Neoplasia , Glicoproteínas de Membrana Plaquetaria , Animales , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Humanos , Ratones , Glicoproteínas de Membrana Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/genética , Línea Celular Tumoral , Femenino , Ratones Endogámicos C57BLRESUMEN
Inositol 1,4,5-trisphosphate (IP3) receptor type 1 (ITPR1), 2 (ITPR2), and 3 (ITPR3) encode the IP3 receptor (IP3R), a key player in intracellular calcium release. In four unrelated patients, we report that an identical ITPR3 de novo variant-NM_002224.3:c.7570C>T, p.Arg2524Cys-causes, through a dominant-negative effect, a complex multisystemic disorder with immunodeficiency. This leads to defective calcium homeostasis, mitochondrial malfunction, CD4+ lymphopenia, a quasi-absence of naïve CD4+ and CD8+ cells, an increase in memory cells, and a distinct TCR repertoire. The calcium defect was recapitulated in Jurkat knock-in. Site-directed mutagenesis displayed the exquisite sensitivity of Arg2524 to any amino acid change. Despite the fact that all patients had severe immunodeficiency, they also displayed variable multisystemic involvements, including ectodermal dysplasia, Charcot-Marie-Tooth disease, short stature, and bone marrow failure. In conclusion, unlike previously reported ITPR1-3 deficiencies leading to narrow, mainly neurological phenotypes, a recurrent dominant ITPR3 variant leads to a multisystemic disease, defining a unique role for IP3R3 in the tetrameric IP3R complex.
Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Femenino , Calcio/metabolismo , Niño , Mutación , Células Jurkat , Preescolar , Genes Dominantes , Linaje , FenotipoRESUMEN
OBJECTIVES: Broadly neutralizing antibodies have been proposed as key actors for HIV vaccine development. However, they display features of highly matured antibodies, hampering their induction by vaccination. As protective broadly neutralizing antibodies should be induced rapidly after vaccination and should neutralize the early-transmitted founder (T/F) viruses, we searched whether such antibodies may be induced following HIV infection. DESIGN: Sera were collected during acute infection (Day 0) and at viral set point (Month 6/12) and the neutralizing activity against T/F strains was investigated. Neutralizing activity in sera collected from chronic progressor was analyzed in parallel. METHODS: We compared neutralizing activity against T/F strains with neutralizing activity against non-T/F strains using the conventional TZM-bL neutralizing assay. RESULTS: We found neutralizing antibodies (nAbs) preferentially directed against T/F viruses in sera collected shortly after infection. This humoral response evolved by shifting to nAbs directed against non-T/F strains. CONCLUSION: Although features associated with nAbs directed against T/F viruses need further investigations, these early-induced nAbs may display lesser maturation characteristics; therefore, this might increase their interest for future vaccine designs.
Asunto(s)
Infecciones por VIH , Humanos , Infecciones por VIH/prevención & control , Anticuerpos ampliamente neutralizantesRESUMEN
OBJECTIVE: Spontaneous control of HIV replication without treatment in HIV-1 controllers (HICs) was associated with the development of an efficient T-cell response. In addition, increasing data suggest that the humoral response participates in viral clearance. DESIGN: In-depth characterization of Ab response in HICs may help to define new parameters associated with this control. METHODS: We assessed the levels of total and HIV-specific IgA and IgG subtypes induction and their functional potencies - that is, neutralization, phagocytosis, antibody-dependent cellular cytotoxicity (ADCC), according to the individual's major histocompatibility complex class I (HLA)-B∗57 status, and compared it with nontreated chronic progressors. RESULTS: We found that despite an undetectable viral load, HICs displayed HIV-specific IgG levels similar to those of chronic progressors. Interestingly, our compelling multifunctional analysis demonstrates that the functional Ab profile, by itself, allowed to discriminate HLA-B∗57+ HICs from HLA-B∗57- HICs and chronic progressors. CONCLUSION: These results show that HICs display a particular HIV-specific antibody (Ab) profile that may participate in HIV control and emphasize the relevance of multifunctional Ab response analysis in future Ab-driven vaccine studies.
Asunto(s)
Infecciones por VIH , VIH-1 , Anticuerpos Anti-VIH , VIH no-Progresivos , Antígenos HLA-B , Humanos , Inmunoglobulina G , Carga ViralRESUMEN
The drivers of critical coronavirus disease 2019 (COVID-19) remain unknown. Given major confounding factors such as age and comorbidities, true mediators of this condition have remained elusive. We used a multi-omics analysis combined with artificial intelligence in a young patient cohort where major comorbidities were excluded at the onset. The cohort included 47 "critical" (in the intensive care unit under mechanical ventilation) and 25 "non-critical" (in a non-critical care ward) patients with COVID-19 and 22 healthy individuals. The analyses included whole-genome sequencing, whole-blood RNA sequencing, plasma and blood mononuclear cell proteomics, cytokine profiling, and high-throughput immunophenotyping. An ensemble of machine learning, deep learning, quantum annealing, and structural causal modeling were used. Patients with critical COVID-19 were characterized by exacerbated inflammation, perturbed lymphoid and myeloid compartments, increased coagulation, and viral cell biology. Among differentially expressed genes, we observed up-regulation of the metalloprotease ADAM9. This gene signature was validated in a second independent cohort of 81 critical and 73 recovered patients with COVID-19 and was further confirmed at the transcriptional and protein level and by proteolytic activity. Ex vivo ADAM9 inhibition decreased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake and replication in human lung epithelial cells. In conclusion, within a young, otherwise healthy, cohort of individuals with COVID-19, we provide the landscape of biological perturbations in vivo where a unique gene signature differentiated critical from non-critical patients. We further identified ADAM9 as a driver of disease severity and a candidate therapeutic target.
Asunto(s)
COVID-19 , Proteínas ADAM , Inteligencia Artificial , Humanos , Unidades de Cuidados Intensivos , Proteínas de la Membrana , Respiración Artificial , SARS-CoV-2RESUMEN
Tumor progression and metastatic dissemination are driven by cell-intrinsic and biomechanical cues that favor the growth of life-threatening secondary tumors. We recently identified pro-metastatic vascular regions with blood flow profiles that are permissive for the arrest of circulating tumor cells. We have further established that such flow profiles also control endothelial remodeling, which favors extravasation of arrested CTCs. Yet, how shear forces control endothelial remodeling is unknown. In the present work, we aimed at dissecting the cellular and molecular mechanisms driving blood flow-dependent endothelial remodeling. Transcriptomic analysis of endothelial cells revealed that blood flow enhanced VEGFR signaling, among others. Using a combination of in vitro microfluidics and intravital imaging in zebrafish embryos, we now demonstrate that the early flow-driven endothelial response can be prevented upon specific inhibition of VEGFR tyrosine kinase and subsequent signaling. Inhibitory targeting of VEGFRs reduced endothelial remodeling and subsequent metastatic extravasation. These results confirm the importance of VEGFR-dependent endothelial remodeling as a driving force of CTC extravasation and metastatic dissemination. Furthermore, the present work suggests that therapies targeting endothelial remodeling might be a relevant clinical strategy in order to impede metastatic progression.
Asunto(s)
Endotelio Vascular/fisiología , Hemorreología , Migración Transendotelial y Transepitelial , Animales , Animales Modificados Genéticamente , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/fisiología , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas In Vitro , Microscopía Intravital , Microfluídica , Microscopía Confocal , Células Neoplásicas Circulantes , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Transducción de Señal/fisiología , Sunitinib/farmacología , Sunitinib/uso terapéutico , Migración Transendotelial y Transepitelial/efectos de los fármacos , Receptor 1 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 1 de Factores de Crecimiento Endotelial Vascular/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología , Pez Cebra/embriologíaRESUMEN
B-cell receptor (BCR) signaling is crucial for the pathophysiology of most mature B-cell lymphomas/leukemias and has emerged as a therapeutic target whose effectiveness remains limited by the occurrence of mutations. Therefore, deciphering the cellular program activated downstream this pathway has become of paramount importance for the development of innovative therapies. Using an original ex vivo model of BCR-induced proliferation of chronic lymphocytic leukemia cells, we generated 108 temporal transcriptional and proteomic profiles from 1 h up to 4 days after BCR activation. This dataset revealed a structured temporal response composed of 13,065 transcripts and 4027 proteins, comprising a leukemic proliferative signature consisting of 430 genes and 374 proteins. Mathematical modeling of this complex cellular response further highlighted a transcriptional network driven by 14 early genes linked to proteins involved in cell proliferation. This group includes expected genes (EGR1/2, NF-kB) and genes involved in NF-kB signaling modulation (TANK, ROHF) and immune evasion (KMO, IL4I1) that have not yet been associated with leukemic cells proliferation. Our study unveils the BCR-activated proliferative genetic program in primary leukemic cells. This approach combining temporal measurements with modeling allows identifying new putative targets for innovative therapy of lymphoid malignancies and also cancers dependent on ligand-receptor interactions.
Asunto(s)
Linfocitos B/metabolismo , Proliferación Celular/genética , Leucemia Linfocítica Crónica de Células B/genética , Receptores de Antígenos de Linfocitos B/genética , Anciano , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Activación de Linfocitos/genética , Masculino , Persona de Mediana Edad , Proteoma/genética , Proteómica/métodos , Transducción de Señal/genética , Transcripción Genética/genéticaRESUMEN
Radiotherapy, the most frequent treatment of oral squamous cell carcinomas (OSCC) besides surgery is employed to kill tumor cells but, radiotherapy may also promote tumor relapse where the immune-suppressive tumor microenvironment (TME) could be instrumental. We established a novel syngeneic grafting model from a carcinogen-induced tongue tumor, OSCC13, to address the impact of radiotherapy on OSCC. This model revealed similarities with human OSCC, recapitulating carcinogen-induced mutations found in smoking associated human tongue tumors, abundant tumor infiltrating leukocytes (TIL) and, spontaneous tumor cell dissemination to the local lymph nodes. Cultured OSCC13 cells and OSCC13-derived tongue tumors were sensitive to irradiation. At the chosen dose of 2 Gy mimicking treatment of human OSCC patients not all tumor cells were killed allowing to investigate effects on the TME. By investigating expression of the extracellular matrix molecule tenascin-C (TNC), an indicator of an immune suppressive TME, we observed high local TNC expression and TIL infiltration in the irradiated tumors. In a TNC knockout host the TME appeared less immune suppressive with a tendency towards more tumor regression than in WT conditions. Altogether, our novel syngeneic tongue OSCC grafting model, sharing important features with the human OSCC disease could be relevant for future anti-cancer targeting of OSCC by radiotherapy and other therapeutic approaches.
Asunto(s)
Ganglios Linfáticos/efectos de la radiación , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Tenascina/metabolismo , Neoplasias de la Lengua/radioterapia , Animales , Línea Celular Tumoral , Femenino , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Metástasis Linfática , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Trasplante de Neoplasias , Tolerancia a Radiación , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/secundario , Tenascina/genética , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/metabolismo , Neoplasias de la Lengua/patología , Trasplante Isogénico , Carga Tumoral/efectos de la radiación , Microambiente TumoralRESUMEN
Immune checkpoint therapy, where CD8 tumor infiltrating T lymphocytes (TIL) are reactivated, is a promising anti-cancer treatment approach, yet with low response rates. The extracellular matrix, in particular tenascin-C, may generate barriers for TIL. To investigate this possibility, we used a MMTV-NeuNT and syngeneic mammary gland grafting model derived thereof with engineered tenascin-C levels and observed accumulation of CD8 TIL in tenascin-C-rich stroma. Inhibition studies revealed that tenascin-C induced CXCL12 through TLR4. By binding CXCL12, tenascin-C retained CD8 TIL in the stroma. Blockade of CXCR4, the receptor of CXCL12, enhanced macrophage and CD8 TIL infiltration and reduced tumor growth and subsequent metastasis. Retention of CD8 TIL by tenascin-C/CXCL12 was also observed in human breast cancer by tissue staining. Moreover, whereas high CD8 TIL numbers correlated with longer metastasis-free survival, this was not the case when also tenascin-C and CXCL12 levels were high. Altogether, these results may be useful for improving tumor immunity as diagnostic tool and to formulate a future "TIL-matrix-release-and-reactivate" strategy.
Asunto(s)
Linfocitos Infiltrantes de Tumor , Neoplasias , Linfocitos T CD8-positivos , Quimiocina CXCL12 , Matriz Extracelular , Humanos , TenascinaRESUMEN
Cancer extracellular vesicles (EVs) shuttle at distance and fertilize pre-metastatic niches facilitating subsequent seeding by tumor cells. However, the link between EV secretion mechanisms and their capacity to form pre-metastatic niches remains obscure. Using mouse models, we show that GTPases of the Ral family control, through the phospholipase D1, multi-vesicular bodies homeostasis and tune the biogenesis and secretion of pro-metastatic EVs. Importantly, EVs from RalA or RalB depleted cells have limited organotropic capacities in vivoand are less efficient in promoting metastasis. RalA and RalB reduce the EV levels of the adhesion molecule MCAM/CD146, which favors EV-mediated metastasis by allowing EVs targeting to the lungs. Finally, RalA, RalB, and MCAM/CD146, are factors of poor prognosis in breast cancer patients. Altogether, our study identifies RalGTPases as central molecules linking the mechanisms of EVs secretion and cargo loading to their capacity to disseminate and induce pre-metastatic niches in a CD146-dependent manner.
Asunto(s)
Neoplasias de la Mama/genética , Exosomas/patología , GTP Fosfohidrolasas/metabolismo , Metástasis de la Neoplasia/genética , Animales , Neoplasias de la Mama/secundario , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Cuerpos Multivesiculares/fisiología , Pez CebraRESUMEN
BACKGROUND: In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. RESULTS: In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1's role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3' UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. CONCLUSIONS: Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels.
Asunto(s)
Empalme Alternativo/genética , Codón sin Sentido/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Homeostasis/genética , Proteómica/métodos , Estabilidad del ARN/genética , Transactivadores/metabolismo , Regiones no Traducidas 3'/genética , Proteínas Portadoras/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , Espectrometría de Masas , Sistemas de Lectura Abierta/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Biosíntesis de Proteínas/genética , Proteínas Serina-Treonina Quinasas , ARN Helicasas , ARN sin Sentido/metabolismo , Proteínas de Unión al ARN , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo , Electroforesis Bidimensional Diferencial en GelRESUMEN
Rationale: The role of Monosodium Urate (MSU) crystals in gout pathophysiology is well described, as is the major impact of IL-1ß in the inflammatory reaction that constitutes the hallmark of the disease. However, despite the discovery of the NLRP3 inflammasome and its role as a Pattern Recognition Receptor linking the detection of a danger signal (MSU) to IL-1ß secretion in vitro, the precise mechanisms leading to joint inflammation in gout patients are still poorly understood. Methods: Acute urate crystal inflammation was obtained by subcutaneous injections of MSU crystals in mice. Symptoms were followed by scoring, cytokine quantification by ELISA and western blot, gene expression by RT-qPCR and RNAseq; Magnetic Resonance Imaging was also used to assess inflammation. Results: We provide an extensive clinical, biological and molecular characterization of an acute uratic inflammation mouse model which accurately mimics human gout. We report the efficacy of topical imiquimod treatment and its impact on Interferon-dependent down modulation of Il-1ß gene expression in this experimental model. Conclusion: Our work reveals several key features of MSU-dependent inflammation and identifies novel therapeutic opportunities for gout patients.