Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 36(10): 3084-3092, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32101277

RESUMEN

MOTIVATION: The biological effects of human missense variants have been studied experimentally for decades but predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usually based on the analysis of sequence conservation and structural properties of the mutant protein. We recently introduced a new machine learning method that demonstrated for the first time the significance of protein dynamics in determining the pathogenicity of missense variants. RESULTS: Here, we present a new interface (Rhapsody) that enables fully automated assessment of pathogenicity, incorporating both sequence coevolution data and structure- and dynamics-based features. Benchmarked against a dataset of about 20 000 annotated variants, the methodology is shown to outperform well-established and/or advanced prediction tools. We illustrate the utility of Rhapsody by in silico saturation mutagenesis studies of human H-Ras, phosphatase and tensin homolog and thiopurine S-methyltransferase. AVAILABILITY AND IMPLEMENTATION: The new tool is available both as an online webserver at http://rhapsody.csb.pitt.edu and as an open-source Python package (GitHub repository: https://github.com/prody/rhapsody; PyPI package installation: pip install prody-rhapsody). Links to additional resources, tutorials and package documentation are provided in the 'Python package' section of the website. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Documentación , Programas Informáticos , Biología Computacional , Simulación por Computador , Humanos , Virulencia
2.
bioRxiv ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712044

RESUMEN

Embeddings from protein language models (PLM's) capture intricate patterns for protein sequences, enabling more accurate and efficient prediction of protein properties. Incorporating protein structure information as direct input into PLMs results in an improvement on the predictive ability of protein embeddings on downstream tasks. In this work we demonstrate that indirectly infusing structure information into PLMs also leads to performance gains on structure related tasks. The key difference between this framework and others is that at inference time the model does not require access to structure to produce its embeddings.

3.
Nat Genet ; 56(9): 1878-1889, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39160255

RESUMEN

Multiple myeloma is a treatable, but currently incurable, hematological malignancy of plasma cells characterized by diverse and complex tumor genetics for which precision medicine approaches to treatment are lacking. The Multiple Myeloma Research Foundation's Relating Clinical Outcomes in Multiple Myeloma to Personal Assessment of Genetic Profile study ( NCT01454297 ) is a longitudinal, observational clinical study of newly diagnosed patients with multiple myeloma (n = 1,143) where tumor samples are characterized using whole-genome sequencing, whole-exome sequencing and RNA sequencing at diagnosis and progression, and clinical data are collected every 3 months. Analyses of the baseline cohort identified genes that are the target of recurrent gain-of-function and loss-of-function events. Consensus clustering identified 8 and 12 unique copy number and expression subtypes of myeloma, respectively, identifying high-risk genetic subtypes and elucidating many of the molecular underpinnings of these unique biological groups. Analysis of serial samples showed that 25.5% of patients transition to a high-risk expression subtype at progression. We observed robust expression of immunotherapy targets in this subtype, suggesting a potential therapeutic option.


Asunto(s)
Variaciones en el Número de Copia de ADN , Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Regulación Neoplásica de la Expresión Génica , Secuenciación del Exoma , Perfilación de la Expresión Génica , Femenino , Masculino , Secuenciación Completa del Genoma , Estudios Longitudinales , Progresión de la Enfermedad , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA