Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pediatr Orthop ; 38(10): e562-e571, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30199457

RESUMEN

BACKGROUND: A new growing rod (GR) design, the semiconstrained growing rod (SCGR), with the added advantage of axial rotation freedom within the components, has been introduced at our center which has been shown to be growth friendly. We hypothesize that the SCGR system would reduce autofusion in vivo, thereby maximizing the coronal plane correction, T1-S1 growth, and the final correction achieved at definitive fusion for children with an early onset scoliosis. METHODS: In total, 28 patients had either single or dual 5.5 mm diameter SCGR placed minimally invasively through a submuscular approach. Surgical lengthening procedures occurred approximately every 6 months until the definitive fusion procedure was performed for 18 patients. Scoliosis, kyphosis, and lordosis angles, T1-S1 trunk length, and any complications encountered were evaluated. RESULTS: For the full cohort, before GR insertion, the mean major Cobb curve angle was 72.4 degrees (SD, 18.8; range, 45 to 120), mean T1-S1 trunk length was 282 mm (SD, 59; range, 129 to 365), and at the latest follow-up (mean 6.9 y, SD 3.3, range 2.0 to 13.0), 38.8 degrees (SD, 17.5; range 10 to 90) and 377 mm (SD, 62; range, 225 to 487), respectively. For the subset of 18 patients who have had their final instrumented fusion surgery, the definitive surgery procedure alone produced a correction of the major Cobb curve angle by mean 20.3 degrees (SD, 16.1; P<0.0001), and an increase in the T1-S1 trunk length of mean 31.7 mm (SD, 23.1; P<0.0001). There were 14 complications involving 11 of the 28 patients, giving rise to 5 unplanned surgical interventions and 1 case where GR treatment was abandoned. CONCLUSIONS: SCGR patients exhibited statistically significant increase in T1-S1 trunk length and statistically significant decrease in the severity of scoliosis over the course of GR treatment and again, importantly, with the definitive fusion surgery, suggesting that autofusion had been minimized during GR treatment with relatively low complication rates. LEVEL OF EVIDENCE: Level IV-case series.


Asunto(s)
Fijadores Internos , Implantación de Prótesis/métodos , Escoliosis/cirugía , Adolescente , Niño , Femenino , Humanos , Cifosis/cirugía , Masculino , Estudios Prospectivos , Radiografía , Estudios Retrospectivos , Escoliosis/diagnóstico por imagen , Fusión Vertebral , Columna Vertebral/crecimiento & desarrollo , Columna Vertebral/cirugía , Resultado del Tratamiento
2.
J Magn Reson Imaging ; 45(6): 1723-1735, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28500665

RESUMEN

PURPOSE: To assess the feasibility of diffusion tensor imaging (DTI) for evaluating changes in anulus fibrosus (AF) microstructure following uniaxial compression. MATERIALS AND METHODS: Six axially aligned samples of AF were obtained from a merino sheep disc; two each from the anterior, lateral, and posterior regions. The samples were mechanically loaded in axial compression during five cycles at a rate and maximum compressive strain that reflected physiological conditions. DTI was conducted at 7T for each sample before and after mechanical testing. RESULTS: The mechanical response of all samples in unconfined compression was nonlinear. A stiffer response during the first loading cycle, compared to the remaining cycles, was observed. Change in diffusion parameters appeared to be region-dependent. The mean fractional anisotropy increased following mechanical testing. This was smallest in the lateral (2% and 9%) and largest in the anterior and posterior samples (17-25%). The mean average diffusivity remained relatively constant (<2%) after mechanical testing in the lateral and posterior samples, but increased (by 5%) in the anterior samples. The mean angle made by the principal eigenvector with the spine axis in the lateral samples was 73° and remained relatively constant (<2%) following mechanical testing. This angle was smaller in the anterior (55°) and posterior (47°) regions and increased by 6-16° following mechanical testing. CONCLUSION: These preliminary results suggest that axial compression reorients the collagen fibers, such that they become more consistently aligned parallel to the plane of the endplates. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;45:1723-1735.


Asunto(s)
Anillo Fibroso/anatomía & histología , Anillo Fibroso/fisiología , Imagen de Difusión Tensora/métodos , Interpretación de Imagen Asistida por Computador/métodos , Soporte de Peso/fisiología , Animales , Anillo Fibroso/diagnóstico por imagen , Estudios de Factibilidad , Técnicas In Vitro , Proyectos Piloto , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Ovinos , Estrés Mecánico
3.
Clin Orthop Relat Res ; 475(3): 884-893, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27900714

RESUMEN

BACKGROUND: Adolescent idiopathic scoliosis is a complex three-dimensional deformity of the spine characterized by deformities in the sagittal, coronal, and axial planes. Spinal fusion using pedicle screw instrumentation is a widely used method for surgical correction in severe (coronal deformity, Cobb angle > 45°) adolescent idiopathic scoliosis curves. Understanding the anatomic difference in the pedicles of patients with adolescent idiopathic scoliosis is essential to reduce the risk of neurovascular or visceral injury through pedicle screw misplacement. QUESTIONS/PURPOSES: To use CT scans (1) to analyze pedicle anatomy in the adolescent thoracic scoliotic spine comparing concave and convex pedicles and (2) to assess the intra- and interobserver reliability of these measurements to provide critical information to spine surgeons regarding size, length, and angle of projection. METHODS: Between 2007 and 2009, 27 patients with adolescent idiopathic scoliosis underwent thoracoscopic anterior correction surgery by two experienced spinal surgeons. Preoperatively, each patient underwent a CT scan as was their standard of care at that time. Twenty-two patients (mean age, 15.7 years; SD, 2.4 years; range, 11.6-22 years) (mean Cobb angle, 53°; SD, 5.3°; range, 42°-63°) were selected. Inclusion criteria were a clinical diagnosis of adolescent idiopathic scoliosis, female, and Lenke type 1 adolescent idiopathic scoliosis with the major curve confined to the thoracic spine. Using three-dimensional image analysis software, the pedicle width, inner cortical pedicle width, pedicle height, inner cortical pedicle height, pedicle length, chord length, transverse pedicle angle, and sagittal pedicle angles were measured. Randomly selected scans were remeasured by two of the authors and the reproducibility of the measurement definitions was validated through limit of agreement analysis. RESULTS: The concave pedicle widths were smaller compared with the convex pedicle widths at T7, T8, and T9 by 37% (3.44 mm ± 1.16 mm vs 4.72 mm ± 1.02 mm; p < 0.001; mean difference, 1.27 mm; 95% CI, 0.92 mm-1.62 mm), 32% (3.66 mm ± 1.00 mm vs 4.82 mm ± 1.10 mm; p < 0.001; mean difference, 1.16 mm; 95% CI, 0.84 mm-1.49 mm), and 25% (4.10 mm ± 1.57 mm vs 5.12 mm ± 1.17 mm; p < 0.001; mean difference, 1.02 mm; 95% CI, 0.66 mm-1.39 mm), respectively. The concave pedicle heights were smaller than the convex at T5 (9.43 mm ± 0.98 vs 10.63 mm ± 1.10 mm; p = 0.002; mean difference, 1.02 mm; 95% CI, 0.59 mm-1.45 mm), T6 (8.87 mm ± 1.37 mm vs 10.88 mm ± 0.81 mm; p < 0.001; mean difference, 2.02 mm; 95% CI, 1.40 mm-2.63 mm), T7 (9.09 mm ± 1.24 mm vs 11.35 mm ± 0.84 mm; p < 0.001; mean difference, 2.26 mm; 95% CI, 1.81 mm-2.72 mm), and T8 (10.11 mm ± 1.05 mm vs 11.86 mm ± 0.88 mm; p < 0.001; mean difference, 1.75 mm; 95% CI, 1.30 mm-2.19 mm). Conversely, the concave transverse pedicle angle was larger than the convex at levels T6 (11.37° ± 4.48° vs 8.82° ± 4.31°; p = 0.004; mean difference, 2.54°; 95% CI, 1.10°-3.99°), T7 (12.69° ± 5.93° vs 8.65° ± 3.79°; p = 0.002; mean difference, 4.04°; 95% CI, 1.90°-6.17°), T8 (13.24° ± 5.28° vs 7.66° ± 4.87°; p < 0.001; mean difference, 5.58°; 95% CI, 2.99°-8.17°), and T9 (19.95° ± 5.69° vs 8.21° ± 4.02°; p < 0.001; mean difference, 4.74°; 95% CI, 2.68°-6.80°), indicating a more posterolateral to anteromedial pedicle orientation. CONCLUSIONS: There is clinically important asymmetry in the morphologic features of pedicles in individuals with adolescent idiopathic scoliosis. The concave side of the curve compared with the convex side is smaller in height and width periapically. Furthermore, the trajectory of the pedicle is more acute on the convex side of the curve compared with the concave side around the apex of the curve. Knowledge of these anatomic variations is essential when performing scoliosis correction surgery to assist with selecting the correct pedicle screw size and trajectory of insertion to reduce the risk of pedicle wall perforation and neurovascular injury.


Asunto(s)
Tomografía Computarizada Multidetector , Escoliosis/diagnóstico por imagen , Columna Vertebral/diagnóstico por imagen , Adolescente , Puntos Anatómicos de Referencia , Niño , Bases de Datos Factuales , Humanos , Imagenología Tridimensional , Variaciones Dependientes del Observador , Tornillos Pediculares , Valor Predictivo de las Pruebas , Interpretación de Imagen Radiográfica Asistida por Computador , Reproducibilidad de los Resultados , Escoliosis/cirugía , Índice de Severidad de la Enfermedad , Programas Informáticos , Fusión Vertebral/instrumentación , Columna Vertebral/cirugía , Toracoscopía , Adulto Joven
4.
Surg Radiol Anat ; 39(3): 281-291, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27272933

RESUMEN

PURPOSE: Cadaveric studies have previously documented a typical pattern of venous drainage within vertebral bodies (VBs), comprised primarily of the basivertebral vein. These studies, however, are limited by the number of samples available. MRI is able to provide 3D images of soft tissue structures in the spine, including the basivertebral vein without the use of contrast in both healthy controls and subjects with abnormal anatomy such as adolescent idiopathic scoliosis (AIS). This study aimed to quantify the venous networks within VBs of 15 healthy adolescent controls and 15 AIS patients. METHODS: Five transverse slices through the VBs were examined simultaneously and the observable vascular network traced. The length of the network on the left and right sides of the VB was calculated, and the spatial patterning assessed level-by-level within each subject. RESULTS: Significant differences were seen in the left/right distribution of vessels in both the control and AIS subjects, with both groups having greater length on the right side of all of their VBs. No difference was seen between AIS and control subjects in any region. Large individual variations in patterns were seen in both groups; however, the control group showed more consistent spatial patterning of the vascular networks across levels in comparison to the AIS group. CONCLUSION: The length of the basivertebral vein was seen to have a significant bias to the right hand side of the VB in both healthy and AIS adolescents. The spatial pattern of this vein showed large variations in branching both within and across individuals. No significant differences were seen between AIS and control subjects, suggesting both that this network is preserved in deformed AIS vertebrae, and that the vertebral venous system does not play a role in the etiology of AIS.


Asunto(s)
Variación Anatómica , Vértebras Lumbares/irrigación sanguínea , Escoliosis/diagnóstico por imagen , Vértebras Torácicas/irrigación sanguínea , Venas/anatomía & histología , Adolescente , Niño , Humanos , Imagenología Tridimensional , Vértebras Lumbares/diagnóstico por imagen , Imagen por Resonancia Magnética , Vértebras Torácicas/diagnóstico por imagen , Venas/diagnóstico por imagen
5.
Artif Organs ; 37(8): 704-11, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23621773

RESUMEN

Right heart dysfunction is one of the most serious complications following implantation of a left ventricular assist device, often leading to the requirement for short- or long-term right ventricular assist device (RVAD) support. The inflow cannulation site induces major hemodynamic changes and so there is a need to optimize the site used depending on the patient's condition. Therefore, this study evaluated and compared the hemodynamic influence of right atrial cannulation (RAC) and right ventricular cannulation (RVC) inflow sites. An in vitro variable heart failure mock circulation loop was used to compare RAC and RVC in mild and severe biventricular heart failure (BHF) conditions. In the severe BHF condition, higher ventricular ejection fraction (RAC: 13.6%, RVC: 32.7%) and thus improved heart chamber and RVAD washout were observed with RVC, which suggested this strategy might be preferable for long-term support (i.e., bridge-to-transplant or destination therapy) to reduce the risk of thrombus formation. In the mild BHF condition, higher pulmonary valve flow (RAC: 3.33 L/min, RVC: 1.97 L/min) and lower right ventricular stroke work (RAC: 0.10 W, RVC: 0.13 W) and volumes were recorded with RAC. These results indicate an improved potential for myocardial recovery, thus RAC should be chosen in this condition. This in vitro study suggests that RVAD inflow cannulation site should be chosen on a patient-specific basis with a view to the support strategy to promote myocardial recovery or reduce the risk of long-term complications.


Asunto(s)
Atrios Cardíacos/cirugía , Insuficiencia Cardíaca/cirugía , Ventrículos Cardíacos/cirugía , Corazón Auxiliar , Dispositivos de Acceso Vascular , Corazón/fisiopatología , Atrios Cardíacos/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/fisiopatología , Hemodinámica , Humanos , Modelos Cardiovasculares
6.
Artif Organs ; 37(8): 735-41, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23461712

RESUMEN

Successful anatomic fitting of a total artificial heart (TAH) is vital to achieve optimal pump hemodynamics after device implantation. Although many anatomic fitting studies have been completed in humans prior to clinical trials, few reports exist that detail the experience in animals for in vivo device evaluation. Optimal hemodynamics are crucial throughout the in vivo phase to direct design iterations and ultimately validate device performance prior to pivotal human trials. In vivo evaluation in a sheep model allows a realistically sized representation of a smaller patient, for which smaller third-generation TAHs have the potential to treat. Our study aimed to assess the anatomic fit of a single device rotary TAH in sheep prior to animal trials and to use the data to develop a three-dimensional, computer-aided design (CAD)-operated anatomic fitting tool for future TAH development. Following excision of the native ventricles above the atrio-ventricular groove, a prototype TAH was inserted within the chest cavity of six sheep (28-40 kg). Adjustable rods representing inlet and outlet conduits were oriented toward the center of each atrial chamber and the great vessels, with conduit lengths and angles recorded for future analysis. A three-dimensional, CAD-operated anatomic fitting tool was then developed, based on the results of this study, and used to determine the inflow and outflow conduit orientation of the TAH. The mean diameters of the sheep left atrium, right atrium, aorta, and pulmonary artery were 39, 33, 12, and 11 mm, respectively. The center-to-center distance and outer-edge-to-outer-edge distance between the atria, found to be 39 ± 9 mm and 72 ± 17 mm in this study, were identified as the most critical geometries for successful TAH connection. This geometric constraint restricts the maximum separation allowable between left and right inlet ports of a TAH to ensure successful alignment within the available atrial circumference.


Asunto(s)
Corazón Artificial , Corazón/anatomía & histología , Animales , Insuficiencia Cardíaca/cirugía , Hemodinámica , Humanos , Modelos Anatómicos , Diseño de Prótesis , Ovinos , Programas Informáticos
7.
J Arthroplasty ; 27(6): 934-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22146384

RESUMEN

The Exeter stems vary in length from 90 to 150 mm. The shorter stems generally have lower offsets. The purpose of this study was to determine if length of stem, with fixed offset, affected rotational stability. Mechanical testing was carried out on 10 implant-cement constructs with 2 loading profiles, rising from chair and stair climbing, at different simulated implant lengths using purpose-built apparatus. This paper presents a mechanism for clinically observed rotational stability and explains the mechanical characteristics required for rotational stability in Exeter femoral stems.


Asunto(s)
Cementos para Huesos , Fémur , Prótesis de Cadera , Inestabilidad de la Articulación/prevención & control , Ensayo de Materiales/métodos , Diseño de Prótesis , Rotación , Artroplastia de Reemplazo de Cadera/instrumentación , Fenómenos Biomecánicos , Humanos , Técnicas In Vitro , Modelos Lineales , Estrés Mecánico , Soporte de Peso
8.
Artif Organs ; 35(4): 384-91, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20883450

RESUMEN

In vitro cardiovascular device performance evaluation in a mock circulation loop (MCL) is a necessary step prior to in vivo testing. A MCL that accurately represents the physiology of the cardiovascular system accelerates the assessment of the device's ability to treat pathological conditions. To serve this purpose, a compact MCL measuring 600 × 600 × 600 mm (L × W × H) was constructed in conjunction with a computer mathematical simulation. This approach allowed the effective selection of physical loop characteristics, such as pneumatic drive parameters, to create pressure and flow, and pipe dimensions to replicate the resistance, compliance, and fluid inertia of the native cardiovascular system. The resulting five-element MCL reproduced the physiological hemodynamics of a healthy and failing heart by altering ventricle contractility, vascular resistance/compliance, heart rate, and vascular volume. The effects of interpatient anatomical variability, such as septal defects and valvular disease, were also assessed. Cardiovascular hemodynamic pressures (arterial, venous, atrial, ventricular), flows (systemic, bronchial, pulmonary), and volumes (ventricular, stroke) were analyzed in real time. The objective of this study is to describe the developmental stages of the compact MCL and demonstrate its value as a research tool for the accelerated development of cardiovascular devices.


Asunto(s)
Corazón Auxiliar , Hemodinámica , Fenómenos Fisiológicos Cardiovasculares , Sistema Cardiovascular/fisiopatología , Humanos
9.
Clin Biomech (Bristol, Avon) ; 74: 73-78, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32145672

RESUMEN

BACKGROUND: Adolescent idiopathic scoliosis is a common condition affecting 2.5% of the general population. Vertebral body stapling was introduced as a method of fusionless growth modulation for the correction of moderate idiopathic scoliosis (Cobb angles of 20-40°), and was claimed to be more effective than bracing and less invasive than fusion. The aim of this study was to assess the effect of vertebral body stapling on the stiffness of a thoracic motion segment unit under moment controlled load, and to assess the vertebral structural damage caused by the staples. METHODS: Thoracic spine motion segments from 6 to 8 week old calves (n=14) were tested in flexion/extension, lateral bending, and axial rotation. The segments were tested un-instrumented, then a left anterolateral intervertebral Shape Memory Alloy (SMA) staple was inserted and the test was repeated. Data were collected from the tenth load cycle of each sequence and stiffness was calculated. The staples were carefully removed and the segments were studied with micro-computed tomography to assess physical damage to the bony structure. Visual assessment of the vertebral bone structure on micro-CT was performed. FINDINGS: There was no change in motion segment stiffness in flexion/extension nor in axial rotation. There was a reduction in stiffness in lateral bending with 30% reduction bending away from the staple and 12% reduction bending towards the staple. Micro-CT showed physeal damage in all the specimens. INTERPRETATION: Intervertebral stapling using SMA staples cause a reduction in spine stiffness in lateral bending. They also cause damage to the endplate epiphyses.


Asunto(s)
Fenómenos Mecánicos , Cuerpo Vertebral/fisiología , Adolescente , Animales , Fenómenos Biomecánicos , Bovinos , Humanos , Rotación , Suturas , Cuerpo Vertebral/anatomía & histología , Cuerpo Vertebral/diagnóstico por imagen , Cuerpo Vertebral/cirugía , Soporte de Peso , Microtomografía por Rayos X
10.
Spine Deform ; 8(6): 1193-1204, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32557264

RESUMEN

STUDY DESIGN: Prospective cohort study. OBJECTIVES: Investigate the progressive changes in pedicle morphometry and the spatial relationship between the pedicles and neurovascular structures in patients with AIS during growth. Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional spine deformity. AIS pedicles are known to be asymmetrical when compared to adolescents without scoliosis. Defining the anatomical changes occurring progressively in scoliosis as it increases with time and growth is essential for understanding the pathophysiology of scoliosis and for treatment planning. MRI is the ideal method to study the growing spine without ionising radiation. METHODS: 24 females with AIS (mean 12.6 years, right sided main thoracic curves) and 20 non-scoliotic females (mean 11.5 years) were selected from an ongoing database. Participants underwent two 3D MRI scans (3 T scanner, T1, 0.5 mm isotropic voxels) approximately 1 year apart (AIS: mean 1.3 ± 0.05 years, control: mean 1.0 ± 0.1 years). The pedicle width, chord length, pedicle height, transverse pedicle angle, sagittal pedicle angle, distance from vertebrae to aorta and distance from pedicle to dural sac were measured from T5 to T12. Inter- and intra-observer variability was assessed. RESULTS: From scans 1-2 in the AIS group, the dural sac became closer to the left pedicle (p < 0.05, T6, T8-T10 and T12) while the distance from the vertebrae to the aorta increased (p < 0.05, T6-T10). No significant changes in these measurements were observed in the non-scoliotic group. Between scans, the AIS chord length and transverse pedicle angle increased on the left side around the apex (p < 0.05) creating asymmetries not seen in the non-scoliotic cohort. The mean pedicle height increased symmetrically in the non-scoliosis cohort (p < 0.05) and asymmetrically in the AIS group with the right side growing faster than the left at T6-T7 (p < 0.05). CONCLUSION: Asymmetrical growth patterns occur in the vertebral posterior elements of AIS patients compared to the symmetrical growth patterns found in the non-scoliotic participants. LEVEL OF EVIDENCE: Level II prospective comparative study.


Asunto(s)
Escoliosis/patología , Cuerpo Vertebral/crecimiento & desarrollo , Cuerpo Vertebral/patología , Adolescente , Factores de Edad , Niño , Progresión de la Enfermedad , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Estudios Prospectivos , Escoliosis/diagnóstico por imagen , Cuerpo Vertebral/anatomía & histología , Cuerpo Vertebral/diagnóstico por imagen
11.
Spine (Phila Pa 1976) ; 44(15): 1035-1041, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31095121

RESUMEN

STUDY DESIGN: Bovine motion segments were used to investigate the high-rate compression response of intervertebral discs (IVD) before and after depressurising the nucleus pulposus (NP) by drilling a hole through the cranial endplate into it. OBJECTIVE: To investigate the effect of depressurising the NP on the force-displacement response, and the energy absorption in IVDs when compressed at high strain rates. SUMMARY OF BACKGROUND DATA: The mechanical function of the gelatinous NP located in the center of the IVDs of the spine is unclear. Removal of the NP has been shown to affect the direction of bulge of the inner anulus fibrosus (AF), but at low loading rates removal of the NP pressure does not affect the IVD's stiffness. During sports or injurious events, IVDs are commonly exposed to high loading rates, however, no studies have investigated the mechanical function of the NP at these rates. METHODS: Eight bovine motion segments were used to quantify the change in pressure caused by a hole drilled through the cranial endplate into the NP, and eight segments were used to investigate the high-rate response before and after a hole was drilled into the NP. RESULTS: The hole caused a 28.5% drop in the NP pressure. No statistically significant difference was seen in peak force, peak displacement, or energy-absorption of the intact, and depressurized NP groups under impact loading. The IVDs absorbed 72% of the input energy, and there was no rate dependency in the percentage energy absorbed. CONCLUSION: These results demonstrate that the NP pressure does not affect the transfer of load through, or energy absorbed by, the IVD at high loading rates and the AF, rather than the NP, may play the most important role in transferring load, and absorbing energy at these rates. This should be considered when attempting surgically to restore IVD function. LEVEL OF EVIDENCE: N/A.


Asunto(s)
Disco Intervertebral/fisiología , Núcleo Pulposo/fisiología , Animales , Anillo Fibroso/fisiología , Bovinos , Degeneración del Disco Intervertebral
12.
PLoS One ; 14(9): e0222453, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31557174

RESUMEN

INTRODUCTION: 3D non-contact surface scanners capture highly accurate, calibrated images of surface topography for 3D structures. This study sought to establish the efficacy and accuracy of using 3D surface scanning to characterise spinal curvature and sagittal plane contour. METHODS: 10 healthy female adults with a mean age of 25 years, (standard deviation: 3.6 years) underwent both MRI and 3D surface scanning (3DSS) (Artec Eva, Artec Group Inc., Luxembourg) while lying in the lateral decubitus position on a rigid substrate. Prior to 3DSS, anatomical landmarks on the spinous processes of each participant were demarcated using stickers attached to the skin surface. Following 3DSS, oil capsules (fiducial markers) were overlaid on the stickers and the subject underwent MRI. MRI stacks were processed to measure the thoracolumbar spinous process locations, providing an anatomical reference. 3D coordinates for the markers (surface stickers and MRI oil capsules) and for the spinous processes mapped the spinal column profiles and were compared to assess the quality of fit between the 3DSS and MRI marker positions. RESULTS: The RMSE for the polynomials fit to the spinous process, fiducial and surface marker profiles ranged from 0.17-1.15mm for all subjects. The MRI fiducial marker location was well aligned with the spinous process profile in the thoracic and upper lumbar spine for nine of the subjects. Over the 10 subjects, the mean RMSE between the MRI and 3D scan sagittal profiles for all surface markers was 9.8mm (SD 4.2mm). Curvature was well matched for seven of the subjects, with two showing differing curvatures across the lumbar spine due to inconsistent subject positioning. CONCLUSION: Comparison of the observed trends for vertebral position measured from MRI and 3DSS, suggested the surface markers may provide a useful method for measuring internal changes in sagittal curvature or skeletal changes.


Asunto(s)
Imagen por Resonancia Magnética , Columna Vertebral/diagnóstico por imagen , Adulto , Puntos Anatómicos de Referencia/anatomía & histología , Puntos Anatómicos de Referencia/diagnóstico por imagen , Dorso/anatomía & histología , Dorso/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Curvaturas de la Columna Vertebral/diagnóstico por imagen , Columna Vertebral/anatomía & histología
13.
Med Eng Phys ; 29(8): 877-85, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17088094

RESUMEN

In cricket fast bowlers an increased incidence of stress fractures or lesions in the L4 pars interarticularis is observed, which shows a strong statistical correlation with the presence of hypertrophy in the contralateral Quadratus Lumborum (QL) muscle. This study aims to find a physical explanation for this correlation. A mathematical model was used to estimate the forces and moments on the L3 and L4 vertebrae in six postures attained during fast bowling. These forces and moments were used in finite element models to estimate the stresses in the pars interarticularis. Two scenarios were examined per posture: symmetric QL muscles, and right QL muscle volume 30% enlarged. Influence of muscle activation was also investigated. QL asymmetry only correlates with significant stress increases when stress levels are relatively low. When stress levels are high, due to extreme posture or muscle activation, asymmetry only causes small stress changes, suggesting that asymmetry is not the cause of stress fractures in the pars. There are even indications that asymmetry might help to reduce stresses, but more detailed knowledge of the size and activation of the lumbar muscles is needed to confirm this.


Asunto(s)
Traumatismos en Atletas/fisiopatología , Vértebras Lumbares/lesiones , Vértebras Lumbares/fisiopatología , Modelos Biológicos , Músculo Esquelético/fisiopatología , Fracturas de la Columna Vertebral/fisiopatología , Traumatismos en Atletas/etiología , Dorso/fisiopatología , Simulación por Computador , Humanos , Contracción Muscular , Equilibrio Postural , Fracturas de la Columna Vertebral/etiología
14.
Clin Biomech (Bristol, Avon) ; 22(6): 665-73, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17400346

RESUMEN

BACKGROUND: Direct anchorage of a lower-limb prosthesis to the bone through an implanted fixation (osseointegration) has been suggested as an excellent alternative for amputees experiencing complications from use of a conventional socket-type prosthesis. However, an attempt needs to be made to optimize the mechanical design of the fixation and refine the rehabilitation program. Understanding the load applied on the fixation is a crucial step towards this goal. METHODS: The load applied on the osseointegrated fixation of nine transfemoral amputees was measured using a load transducer, when the amputees performed activities which included straight-line level walking, ascending and descending stairs and a ramp as well as walking around a circle. Force and moment patterns along each gait cycle, magnitudes and time of occurrence of the local extrema of the load, as well as impulses were analysed. FINDINGS: Managing a ramp and stairs, and walking around a circle did not produce a significant increase (P>0.05) in load compared to straight-line level walking. The patterns of the moment about the medio-lateral axis were different among the six activities which may reflect the different strategies used in controlling the prosthetic knee joint. INTERPRETATIONS: This study increases the understanding of biomechanics of bone-anchored osseointegrated prostheses. The loading data provided will be useful in designing the osseointegrated fixation to increase the fatigue life and to refine the rehabilitation protocol.


Asunto(s)
Actividades Cotidianas , Amputados , Miembros Artificiales , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Articulación de la Rodilla/fisiopatología , Masculino , Persona de Mediana Edad , Oseointegración , Rotación , Transductores
15.
Med Biol Eng Comput ; 55(4): 561-572, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27364618

RESUMEN

Adolescent idiopathic scoliosis (AIS) is a three-dimensional (3D) spinal deformity of unknown aetiology. Increased growth of the anterior part of the vertebrae known as anterior overgrowth has been proposed as a potential driver for AIS initiation and progression. To date, there has been no objective evaluation of the 3D measurement techniques used to identify this phenomenon and the majority of previous studies use 2D planar assessments which contain inherent projection errors due to the vertebral rotation which is part of the AIS deformity. In this study, vertebral body (VB) heights and wedge angles were measured in a test group of AIS patients and healthy controls using four different image analysis and measurement techniques. Significant differences were seen between the techniques in terms of VB heights and VB wedge angles. The low variability, and the fact that the rotation and tilt of the deformed VBs are taken into account, suggests that the proposed technique using the full 3D orientation of the vertebrae is the most reliable method to measure anterior and posterior VB heights and sagittal plane wedge angles in 3D image data sets. These results have relevance for future investigations that aim to quantify anterior overgrowth in AIS patients for comparison with healthy controls.


Asunto(s)
Estatura , Procesamiento de Imagen Asistido por Computador/métodos , Escoliosis/diagnóstico por imagen , Escoliosis/fisiopatología , Estudios de Casos y Controles , Niño , Femenino , Humanos , Imagen por Resonancia Magnética , Columna Vertebral/diagnóstico por imagen , Columna Vertebral/crecimiento & desarrollo , Columna Vertebral/fisiopatología
16.
Spine (Phila Pa 1976) ; 42(8): E459-E465, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27525539

RESUMEN

STUDY DESIGN: Biomechanical experiment. OBJECTIVE: The aims of the present study were to test the effect of fascial tension on lumbar segmental axial rotation and lateral flexion and the effect of the angle of fascial attachment. SUMMARY OF BACKGROUND DATA: Tension in the middle layer of lumbar fascia has been demonstrated to affect mechanical properties of lumbar segmental flexion and extension in the neutral zone. The effect of tension on segmental axial rotation and lateral flexion has, however, not been investigated. METHODS: Seven unembalmed lumbar spines were divided into segments and mounted for testing. A 6 degree-of-freedom robotic testing facility was used to displace the segments in each anatomical plane (flexion-extension, lateral bending, and axial rotation) with force and moment data recorded by a load cell positioned beneath the test specimen. Tests were performed with and without a 20 N fascia load and the subsequent forces and moments were compared. In addition, forces and moments were compared when the specimens were held in a set position and the fascia loading angle was varied. RESULTS: A fascial tension of 20 N had no measurable effect on the forces or moments measured when the specimens were displaced in any plane of motion (P > 0.05). When 20 N of fascial load were applied to motion segments in a set position small segmental forces and moments were measured. Changing the angle of the fascial load did not significantly alter these measurements. CONCLUSION: Application of a 20 N fascial load did not produce a measureable effect on the mechanics of a motion segment, even though it did produce small measurable forces and moments on the segments when in a fixed position. Results from the present study are inconsistent with previous studies, suggesting that further investigation using multiple testing protocols and different loading conditions is required to determine the effects of fascial loading on spinal segment behavior. LEVEL OF EVIDENCE: N/A.


Asunto(s)
Músculos de la Espalda/fisiología , Vértebras Lumbares/fisiología , Anciano , Anciano de 80 o más Años , Músculos de la Espalda/diagnóstico por imagen , Fenómenos Biomecánicos , Cadáver , Femenino , Humanos , Vértebras Lumbares/diagnóstico por imagen , Masculino , Modelos Biológicos , Rango del Movimiento Articular , Robótica , Rotación , Tomografía Computarizada por Rayos X
17.
Artículo en Inglés | MEDLINE | ID: mdl-28825043

RESUMEN

BACKGROUND: Axial vertebral rotation is a key characteristic of adolescent idiopathic scoliosis (AIS), and its reduction is one of the goals of corrective surgery. Recurrence of deformity after surgical correction may relate to rotation changes that occur in the anterior vertebral column after surgery, but whether any change occurs within the fused segment or in adjacent unfused levels following thoracoscopic anterior spinal fusion (TASF) is unknown. An analysis of measurements from an existing postoperative CT dataset was performed to investigate the occurrence of inter- and intra-vertebral rotation changes after TASF within and adjacent to the fused spinal segment and look for any relationships with the Cobb angle and rib hump in the two years after surgery. METHODS: 39 Lenke Type 1 main thoracic patients underwent TASF for progressive AIS and low dose computed tomography scanning of the instrumented levels of the spine at 6 and 24 months after surgery. Vertebral rotation was measured at the superior and inferior endplates on true axial images for all vertebral levels in the fused segment plus one adjacent level cranially and caudally. Intra-observer variability for rotation measurements was assessed using 95% limits of agreement to detect significant changes in inter/intra-vertebral rotation. RESULTS: Significant local changes in inter- and intra-vertebral rotation were found to have occurred between 6 and 24 months after anterior surgical fusion within the fused spinal segment, albeit with no consistent pattern of location or direction within the instrumented fusion construct. No significant en-bloc movement of the entire fused spinal segment relative to the adjacent un-instrumented cranial and caudal intervertebral levels was found. No clear correlation was found between any vertebral rotation changes and Cobb angle or rib hump measures. CONCLUSIONS: Localised inter- and intra-vertebral rotation occurs between 6 and 24 months after TASF, both within the instrumented spinal segments and in the adjacent un-instrumented levels of the adolescent spine. The lack of measurable en-bloc movement of the fused segment relative to the adjacent un-instrumented levels suggests that overall stability of the instrumented construct is achieved, however the vertebrae within the fusion mass continue to adapt and remodel, resulting in ongoing local anatomical and biomechanical changes in the adolescent spine.

18.
Spine Deform ; 5(3): 197-207, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28449963

RESUMEN

STUDY DESIGN: The aim of this study was to measure contributions of individual vertebra and disc wedging to coronal Cobb angle in the growing scoliotic spine using sequential magnetic resonance imaging (MRI). Clinically, the Cobb angle measures the overall curve in the coronal plane but does not measure individual vertebra and disc wedging. It was hypothesized that patients whose deformity progresses will have different patterns of coronal wedging in vertebrae and discs to those of patients whose deformities remain stable. METHODS: A group of adolescent idiopathic scoliosis (AIS) patients each received two to four MRI scans (spaced 3-12 months apart). The coronal plane wedge angles of each vertebra and disc in the major curve were measured for each scan, and the proportions and patterns of wedging in vertebrae and discs were analyzed for subgroups of patients whose spinal deformity did and did not progress during the study period. RESULTS: Sixteen patients were included in the study; the mean patient age was 12.9 years (standard deviation 1.7 years). All patients were classified as right-sided major thoracic Lenke Type 1 curves (9 type 1A, 4 type 1B, and 3 type 1C). Cobb angle progression of ≥5° between scans was seen in 56% of patients. Although there were measurable changes in the wedging of individual vertebrae and discs in all patients, there was no consistent pattern of deformity progression between patients who progressed and those who did not. The patterns of progression found in this study did not support the hypothesis of wedging commencing in the discs and then transferring to the vertebrae. CONCLUSION: Sequential MRI data showed complex patterns of deformity progression. Changes to the wedging of individual vertebrae and discs may occur in patients who have no increase in Cobb angle; therefore, the Cobb method alone may be insufficient to capture the complex mechanisms of deformity progression.


Asunto(s)
Imagenología Tridimensional/métodos , Disco Intervertebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Escoliosis/diagnóstico por imagen , Columna Vertebral/diagnóstico por imagen , Adolescente , Niño , Progresión de la Enfermedad , Femenino , Humanos , Disco Intervertebral/crecimiento & desarrollo , Disco Intervertebral/patología , Escoliosis/patología , Columna Vertebral/crecimiento & desarrollo , Columna Vertebral/patología
19.
Spine (Phila Pa 1976) ; 41(7): E382-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26583467

RESUMEN

STUDY DESIGN: Anterior and posterior vertebral body heights were measured from sequential magnetic resonance imaging (MRI) scans of adolescent idiopathic scoliosis (AIS) patients and healthy controls. OBJECTIVE: To measure changes in vertebral body height over time during scoliosis progression to assess how vertebral body height discrepancies change during growth. SUMMARY OF BACKGROUND DATA: Relative anterior overgrowth has been proposed as a potential driver for AIS initiation and progression. This theory proposes that the anterior column grows faster, and the posterior column slower, in AIS patients when compared with healthy controls. There is a disagreement in the literature as to whether the anterior vertebral body heights are proportionally greater than posterior vertebral body heights in AIS patients when compared with healthy controls. To some extent, these discrepancies may be attributed to methodological differences. METHODS: MRI scans of the major curve of 21 AIS patients (mean age 12.5 ±â€Š1.4 years, mean Cobb 32.2 ±â€Š12.8 degrees) and between T4 and T12 of 21 healthy adolescents (mean age 12.1 ±â€Š0.5 years) were captured for this study. Of the 21 AIS patients, 14 had a second scan on average 10.8 ±â€Š4.7 months after the first. Anterior and posterior vertebral body heights were measured from the true sagittal plane of each vertebra such that anterior overgrowth could be quantified. RESULTS: The difference between anterior and posterior vertebral body height in healthy, nonscoliotic children was significantly greater than in AIS patients with mild to moderate scoliosis. There was; however, no significant relationship between the overall anterior-posterior vertebral body height difference in AIS and either severity of the curve or its progression over time. CONCLUSION: Whilst AIS patients have a proportionally longer anterior column than nonscoliotic controls, the degree of anterior overgrowth was not related to the rate of progression or the severity of the scoliotic curve. LEVEL OF EVIDENCE: 3.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Escoliosis/diagnóstico por imagen , Escoliosis/patología , Vértebras Torácicas/diagnóstico por imagen , Vértebras Torácicas/patología , Adolescente , Niño , Estudios de Cohortes , Femenino , Humanos
20.
Spine Deform ; 4(3): 182-192, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27927501

RESUMEN

PURPOSE: The dimensions of the thoracic intervertebral foramen in adolescent idiopathic scoliosis (AIS) have not previously been quantified. Better understanding of the dimensions of the foramen may be useful in surgical planning. This study describes a reproducible method for measurement of the thoracic foramen in AIS using computed tomography (CT). METHODS: In 23 preoperative female patients with Lenke 1 type AIS with right-side convexity major curves confined to the thoracic spine the foraminal height (FH), foraminal width (FW), pedicle to superior articular process distance (P-SAP), and cross-sectional foraminal area (FA) were measured using multiplanar reconstructed CT. Measurements were made at entrance, midpoint, and exit of the thoracic foramina from T1-T2 to T11-T12. Results were also correlated with dependent variables of major curve Cobb angle measured on X-ray and CT, age, weight, Lenke classification subtype, Risser grade, and number of spinal levels in the major curve. RESULTS: The FH, FW, P-SAP, and FA dimensions and ratios are all significantly larger on the convexity of the major curve and maximal at or close to the apex. Mean thoracic foraminal dimensions change in a predictable manner relative to position on the major thoracic curve. There was no statistically significant correlation with the measured foraminal dimensions or ratios and the individual dependent variables. The average ratio of convexity to concavity dimensions at the apex foramina for entrance, midpoint, and exit, respectively, are FH (1.50, 1.38, 1.25), FW (1.28, 1.30, 0.98), FA (2.06, 1.84, 1.32), and P-SAP (1.61, 1.47, 1.30). CONCLUSION: Foraminal dimensions of the thoracic spine are significantly affected by AIS. Foraminal dimensions have a predictable convexity-to-concavity ratio relative to the proximity to the major curve apex. Surgeons should be aware of these anatomical differences during scoliosis correction surgery.


Asunto(s)
Escoliosis/diagnóstico por imagen , Columna Vertebral/anatomía & histología , Tomografía Computarizada por Rayos X , Adolescente , Estudios Transversales , Femenino , Humanos , Cifosis , Columna Vertebral/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA