Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
bioRxiv ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38948875

RESUMEN

Kidney disease is highly heritable; however, the causal genetic variants, the cell types in which these variants function, and the molecular mechanisms underlying kidney disease remain largely unknown. To identify genetic loci affecting kidney function, we performed a GWAS using multiple kidney function biomarkers and identified 462 loci. To begin to investigate how these loci affect kidney function, we generated single-cell chromatin accessibility (scATAC-seq) maps of the human kidney and identified candidate cis -regulatory elements (cCREs) for kidney podocytes, tubule epithelial cells, and kidney endothelial, stromal, and immune cells. Kidney tubule epithelial cCREs explained 58% of kidney function SNP-heritability and kidney podocyte cCREs explained an additional 6.5% of SNP-heritability. In contrast, little kidney function heritability was explained by kidney endothelial, stromal, or immune cell-specific cCREs. Through functionally informed fine-mapping, we identified putative causal kidney function variants and their corresponding cCREs. Using kidney scATAC-seq data, we created a deep learning model (which we named ChromKid) to predict kidney cell type-specific chromatin accessibility from sequence. ChromKid and allele specific kidney scATAC-seq revealed that many fine-mapped kidney function variants locally change chromatin accessibility in tubule epithelial cells. Enhancer assays confirmed that fine-mapped kidney function variants alter tubule epithelial regulatory element function. To map the genes which these regulatory elements control, we used CRISPR interference (CRISPRi) to target these regulatory elements in tubule epithelial cells and assessed changes in gene expression. CRISPRi of enhancers harboring kidney function variants regulated NDRG1 and RBPMS expression. Thus, inherited differences in tubule epithelial NDRG1 and RBPMS expression may predispose to kidney disease in humans. We conclude that genetic variants affecting tubule epithelial regulatory element function account for most SNP-heritability of human kidney function. This work provides an experimental approach to identify the variants, regulatory elements, and genes involved in polygenic disease.

2.
Front Cell Dev Biol ; 11: 1236553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554308

RESUMEN

Protocols to differentiate human pluripotent stem cells have advanced in terms of cell type specificity and tissue-level complexity over the past 2 decades, which has facilitated human disease modeling in the most relevant cell types. The ability to generate induced PSCs (iPSCs) from patients further enables the study of disease mutations in an appropriate cellular context to reveal the mechanisms that underlie disease etiology and progression. As iPSC-derived disease models have improved in robustness and scale, they have also been adopted more widely for use in drug screens to discover new therapies and therapeutic targets. Advancement in genome editing technologies, in particular the discovery of CRISPR-Cas9, has further allowed for rapid development of iPSCs containing disease-causing mutations. CRISPR-Cas9 technologies have now evolved beyond creating single gene edits, aided by the fusion of inhibitory (CRISPRi) or activation (CRISPRa) domains to a catalytically dead Cas9 protein, enabling inhibition or activation of endogenous gene loci. These tools have been used in CRISPR knockout, CRISPRi, or CRISPRa screens to identify genetic modifiers that synergize or antagonize with disease mutations in a systematic and unbiased manner, resulting in identification of disease mechanisms and discovery of new therapeutic targets to accelerate drug discovery research. However, many technical challenges remain when applying large-scale functional genomics approaches to differentiated PSC populations. Here we review current technologies in the field of iPSC disease modeling and CRISPR-based functional genomics screens and practical considerations for implementation across a range of modalities, applications, and disease areas, as well as explore CRISPR screens that have been performed in iPSC models to-date and the insights and therapies these screens have produced.

3.
Hum Mol Genet ; 18(3): 525-34, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19000991

RESUMEN

Mutations in MECP2, encoding methyl-CpG-binding protein 2 (MeCP2), cause the neurodevelopmental disorder Rett syndrome (RTT). Although MECP2 mutations are rare in idiopathic autism, reduced MeCP2 levels are common in autism cortex. MeCP2 is critical for postnatal neuronal maturation and a modulator of activity-dependent genes such as Bdnf (brain-derived neurotropic factor) and JUNB. The activity-dependent early growth response gene 2 (EGR2), required for both early hindbrain development and mature neuronal function, has predicted binding sites in the promoters of several neurologically relevant genes including MECP2. Conversely, MeCP2 family members MBD1, MBD2 and MBD4 bind a methylated CpG island in an enhancer region located in EGR2 intron 1. This study was designed to test the hypothesis that MECP2 and EGR2 regulate each other's expression during neuronal maturation in postnatal brain development. Chromatin immunoprecipitation analysis showed EGR2 binding to the MECP2 promoter and MeCP2 binding to the enhancer region in EGR2 intron 1. Reduction in EGR2 and MeCP2 levels in cultured human neuroblastoma cells by RNA interference reciprocally reduced expression of both EGR2 and MECP2 and their protein products. Consistent with a role of MeCP2 in enhancing EGR2, Mecp2-deficient mouse cortex samples showed significantly reduced EGR2 by quantitative immunofluorescence. Furthermore, MeCP2 and EGR2 show coordinately increased levels during postnatal development of both mouse and human cortex. In contrast to age-matched Controls, RTT and autism postmortem cortex samples showed significant reduction in EGR2. Together, these data support a role of dysregulation of an activity-dependent EGR2/MeCP2 pathway in RTT and autism.


Asunto(s)
Trastorno Autístico/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Regulación de la Expresión Génica , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/metabolismo , Adolescente , Adulto , Animales , Trastorno Autístico/genética , Línea Celular Tumoral , Corteza Cerebral/metabolismo , Niño , Preescolar , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Lactante , Recién Nacido , Masculino , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Síndrome de Rett/genética
4.
Proc Natl Acad Sci U S A ; 104(49): 19416-21, 2007 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-18042715

RESUMEN

Mutations in MECP2 cause the autism-spectrum disorder Rett syndrome. MeCP2 is predicted to bind to methylated promoters and silence transcription. However, the first large-scale mapping of neuronal MeCP2-binding sites on 26.3 Mb of imprinted and nonimprinted loci revealed that 59% of MeCP2-binding sites are outside of genes and that only 6% are in CpG islands. Integrated genome-wide promoter analysis of MeCP2 binding, CpG methylation, and gene expression revealed that 63% of MeCP2-bound promoters are actively expressed and that only 6% are highly methylated. These results indicate that the primary function of MeCP2 is not the silencing of methylated promoters.


Asunto(s)
Regulación de la Expresión Génica , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/genética , Sitios de Unión , Inmunoprecipitación de Cromatina , Islas de CpG , Metilación de ADN , Silenciador del Gen , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Neuronas/metabolismo , Regiones Promotoras Genéticas
5.
Elife ; 5: e10647, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26949256

RESUMEN

The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor.


Asunto(s)
Acetilglucosamina/metabolismo , Regulación de la Expresión Génica , Células Madre Pluripotentes/fisiología , Procesamiento Proteico-Postraduccional , Factores de Transcripción SOXB1/metabolismo , Animales , Diferenciación Celular , Ratones , Unión Proteica
6.
Hum Mol Genet ; 15(12): 2003-14, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16682435

RESUMEN

Rett syndrome (RTT) is an X-linked dominant neurodevelopmental disorder caused by mutations in MECP2, encoding methyl-CpG-binding protein 2. MeCP2 is a transcriptional repressor elevated in mature neurons and is predicted to be required for neuronal maturation by regulating multiple target genes. Identifying primary gene targets in either Mecp2-deficient mice or human RTT brain has proven to be difficult, perhaps because of the transient requirement for MeCP2 during neuronal maturation. In order to experimentally control the timing of MeCP2 expression and deficiency during neuronal maturation, human SH-SY5Y cells undergoing mature neuronal differentiation were transfected with methylated MeCP2 oligonucleotide decoy to disrupt the binding of MeCP2 to endogenous targets. Genome-wide expression microarray analysis identified all four known members of the inhibitors of differentiation or inhibitors of DNA-binding (ID1, ID2, ID3 and ID4) subfamily of helix-loop-helix genes as novel neuronal targets of MeCP2. Chromatin immunoprecipitation analysis confirmed binding of MeCP2 near or within the promoters of ID1, ID2 and ID3, and quantitative RT-PCR confirmed increased expression of all four Id genes in Mecp2-deficient mouse brain. All four ID proteins were significantly increased in Mecp2-deficient mouse and human RTT brain using immunofluorescence and laser scanning cytometric analyses. Because of their involvement in cell differentiation and neural development, ID genes are ideal primary targets for MeCP2 regulation of neuronal maturation that may explain the molecular pathogenesis of RTT.


Asunto(s)
Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Animales , Encéfalo/citología , Línea Celular , Inmunoprecipitación de Cromatina , Femenino , Humanos , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Hum Mol Genet ; 14(6): 785-97, 2005 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15689352

RESUMEN

Rett syndrome (RTT), caused by mutations in MECP2 (encoding methyl CpG binding protein 2), and Angelman syndrome (AS), caused by maternal deficiency of chromosome 15q11-13, are autism-spectrum neurodevelopmental disorders. MeCP2 is a transcriptional repressor of methylated genes, but MECP2 mutation does not directly affect the imprinted expression of genes within 15q11-13. We tested a potential role for MeCP2 in the homologous pairing of imprinted 15q11-13 alleles in human brain tissue and differentiated neurons by fluorescence in situ hybridization (FISH). FISH analysis of control cerebral samples demonstrated a significant increase in homologous pairing specific to chromosome 15 from infant to juvenile brain samples. Significant and specific deficiencies in the percentage of paired chromosome 15 alleles were observed in RTT, AS and autism brain samples when compared with normal controls. SH-SY5Y neuroblastoma cells also showed a significant and specific increase in the percentage of chromosome 15q11-13 paired alleles following induced differentiation in vitro. Transfection with a methylated oligonucleotide decoy specifically blocked binding of MeCP2 to the SNURF/SNRPN promoter within 15q11-13 and significantly lowered the percentage of paired 15q11-13 alleles in SH-SY5Y cells. These combined results suggest a role for MeCP2 in chromosome organization in the developing brain and provide a potential mechanistic association between several related neurodevelopmental disorders.


Asunto(s)
Trastorno Autístico/metabolismo , Encéfalo/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Emparejamiento Cromosómico , Cromosomas Humanos Par 15/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Represoras/metabolismo , Síndrome de Rett/metabolismo , Trastorno Autístico/genética , Encéfalo/patología , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Emparejamiento Cromosómico/genética , Proteínas de Unión al ADN/genética , Humanos , Lactante , Recién Nacido , Proteína 2 de Unión a Metil-CpG , Neuronas/metabolismo , Proteínas Represoras/genética , Síndrome de Rett/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA