Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Immunol Rev ; 296(1): 169-190, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32594569

RESUMEN

Therapeutic vaccination offers great promise as an intervention for a diversity of infectious and non-infectious conditions. Given that most chronic health conditions are thought to have an immune component, vaccination can at least in principle be proposed as a therapeutic strategy. Understanding the nature of protective immunity is of vital importance, and the progress made in recent years in defining the nature of pathological and protective immunity for a range of diseases has provided an impetus to devise strategies to promote such responses in a targeted manner. However, in many cases, limited progress has been made in clinical adoption of such approaches. This in part results from a lack of safe and effective vaccine adjuvants that can be used to promote protective immunity and/or reduce deleterious immune responses. Although somewhat simplistic, it is possible to divide therapeutic vaccine approaches into those targeting conditions where antibody responses can mediate protection and those where the principal focus is the promotion of effector and memory cellular immunity or the reduction of damaging cellular immune responses as in the case of autoimmune diseases. Clearly, in all cases of antigen-specific immunotherapy, the identification of protective antigens is a vital first step. There are many challenges to developing therapeutic vaccines beyond those associated with prophylactic diseases including the ongoing immune responses in patients, patient heterogeneity, and diversity in the type and stage of disease. If reproducible biomarkers can be defined, these could allow earlier diagnosis and intervention and likely increase therapeutic vaccine efficacy. Current immunomodulatory approaches related to adoptive cell transfers or passive antibody therapy are showing great promise, but these are outside the scope of this review which will focus on the potential for adjuvanted therapeutic active vaccination strategies.


Asunto(s)
Adyuvantes Inmunológicos , Inmunomodulación , Vacunación , Vacunas/inmunología , Vacunas/uso terapéutico , Animales , Formación de Anticuerpos/inmunología , Autoinmunidad , Manejo de la Enfermedad , Humanos , Inmunidad Celular , Inmunidad Humoral , Terapia Molecular Dirigida , Resultado del Tratamiento , Vacunación/métodos , Vacunas/administración & dosificación
2.
Semin Immunol ; 39: 4-13, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30396811

RESUMEN

The development of the CAF family adjuvant was initiated around 20 years ago when Statens Serum Institut was preparing its first generation protein based recombinant subunit vaccine against tuberculosis for clinical testing, but realized that there were no clinically relevant adjuvants available that would support the strong CMI response needed. Since then the aim for the adjuvant research at Statens Serum Institut has been to provide adjuvants with distinct immunogenicity profiles correlating with protection for any given infectious disease. Two of the adjuvants CAF01 and CAF09 are currently being evaluated in human clinical trials. The purpose of this review is to give an overview of the immunocorrelates of those CAF adjuvants furthest in development. We further aim at giving an overview of the mechanism of action of the CAF adjuvants.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Glucolípidos/farmacología , Inmunidad Celular/efectos de los fármacos , Inmunogenicidad Vacunal , Lípido A/análogos & derivados , Compuestos de Amonio Cuaternario/farmacología , Tuberculosis Pulmonar/prevención & control , Adyuvantes Inmunológicos/química , Animales , Glucolípidos/química , Humanos , Inmunidad Humoral/efectos de los fármacos , Lípido A/química , Lípido A/farmacología , Liposomas/administración & dosificación , Liposomas/química , Liposomas/inmunología , Ratones , Compuestos de Amonio Cuaternario/química , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células TH1/microbiología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Células Th17/microbiología , Células Th2/efectos de los fármacos , Células Th2/inmunología , Células Th2/microbiología , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/química , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología
3.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35163772

RESUMEN

The SARS-CoV-2 pandemic caused a massive health and societal crisis, although the fast development of effective vaccines reduced some of the impact. To prepare for future respiratory virus pandemics, a pan-viral prophylaxis could be used to control the initial virus outbreak in the period prior to vaccine approval. The liposomal vaccine adjuvant CAF®09b contains the TLR3 agonist polyinosinic:polycytidylic acid, which induces a type I interferon (IFN-I) response and an antiviral state in the affected tissues. When testing CAF09b liposomes as a potential pan-viral prophylaxis, we observed that intranasal administration of CAF09b liposomes to mice resulted in an influx of innate immune cells into the nose and lungs and upregulation of IFN-I-related gene expression. When CAF09b liposomes were administered prior to challenge with mouse-adapted influenza A/Puerto Rico/8/1934 virus, it protected from severe disease, although the virus was still detectable in the lungs. However, when CAF09b liposomes were administered after influenza challenge, the mice had a similar disease course to controls. In conclusion, CAF09b may be a suitable candidate as a pan-viral prophylactic treatment for epidemic viruses, but must be administered prior to virus exposure to be effective.


Asunto(s)
Adyuvantes de Vacunas/uso terapéutico , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Infecciones por Orthomyxoviridae/prevención & control , Desarrollo de Vacunas/métodos , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/uso terapéutico , Adyuvantes de Vacunas/administración & dosificación , Adyuvantes de Vacunas/química , Adyuvantes de Vacunas/farmacología , Administración Intranasal , Animales , COVID-19/prevención & control , Vacunas contra la COVID-19/síntesis química , Vacunas contra la COVID-19/uso terapéutico , Células Cultivadas , Embrión de Pollo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Vacunas contra la Influenza/farmacología , Interferón Tipo I/genética , Liposomas/química , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Prevención Primaria/métodos , SARS-CoV-2/inmunología
4.
Med Microbiol Immunol ; 209(2): 163-176, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32020284

RESUMEN

A major roadblock in the development of novel vaccines is the formulation and delivery of the antigen. Liposomes composed of a dimethyldioctadecylammonium (DDA) backbone and the adjuvant trehalose-6-6-dibehenate (TDB, termed "cationic adjuvant formulation (CAF01)", promote immunogenicity and protective efficacy of vaccines, most notably against infection with Mycobacterium tuberculosis. Specifically, the multicomponent antigen H56 delivered by CAF01 protects against tuberculosis in mice. Here we investigated whether the inclusion of immune-modulatory adjuvants into CAF01 modulates the immunogenicity of H56/CAF01 in vitro and in vivo. Based on our recent findings we selected the active sequence of the mycobacterial 19 kDa lipoprotein, Pam3Cys, which interacts with Toll like receptor 2 to induce an antimicrobial pathway. H56/CAF01-Pam3Cys liposomes were characterized for Pam3Cys incorporation, size, toxicity and activation of primary human macrophages. Macrophages efficiently take up H56/CAF01-Pam3Cys and trigger the release of significantly higher levels of TNF, IL-12 and IL-10 than H56/CAF01 alone. To evaluate the immunogenicity in vivo, we immunized mice with H56/CAF01-Pam3Cys and measured the release of IFN-γ and IL-17A by lymph node cells and spleen cells. While the antigen-specific production of IFN-γ was reduced by inclusion of Pam3Cys into H56/CAF01, the levels of IL-17A remained unchanged. In agreement with this finding, the concentration of the IFN-γ-associated IgG2a antibodies in the serum was lower than in H56/CAF01 immunized animals. These results provide proof of concept that Toll like-receptor agonist can be included into liposomes to modulate immune responses. The discordant results between the in vitro studies with human macrophages and in vivo studies in mice highlight the relevance and complexity of comparing immune responses in different species.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antígenos Bacterianos/inmunología , Lipoproteínas/inmunología , Receptores Toll-Like/agonistas , Vacunas contra la Tuberculosis/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Antígenos Bacterianos/administración & dosificación , Células Cultivadas , Citocinas/metabolismo , Femenino , Humanos , Inmunomodulación , Liposomas/administración & dosificación , Liposomas/química , Liposomas/inmunología , Liposomas/toxicidad , Macrófagos/inmunología , Ratones , Mycobacterium tuberculosis/inmunología , Células TH1/inmunología , Células Th17/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/química , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología
5.
Microbes Infect ; 26(5-6): 105346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670217

RESUMEN

Vaccine adjuvants, such as liposome-based cationic adjuvant formulations (CAFs), are able to boost immune responses and, by incorporation of distinct immunomodulators, steer immunity towards a desired direction in mice, non-human primates and humans, while less studied in pigs. Here we used commercial pigs to investigate polarizing adjuvant effects of CAFs with immunomodulators: C-type lectin receptor ligands trehalose-6,6'-dibehenate and monomycolyl glycerol, toll-like receptor 3 ligand Poly(I:C) or retinoic acid. Vaccines were formulated with a recombinant Chlamydia model protein antigen and administered via three injection routes. All adjuvants significantly increased antigen-specific IgG in serum, compared to non-adjuvanted antigen. Administering the vaccines through intramuscular and intraperitoneal routes induced significantly higher antigen-specific IgG and IgA serum antibodies, than the perirectal route. Although immunizations triggered cell-mediated immunity, no significant differences between adjuvants or injection sites were detected. Genes depicting T cell subtypes revealed only minor differences. Our findings suggest that specific signatures of the tested adjuvant immunomodulation do not translate well from mice to pigs in standard two-dose immunizations. This study provides new insights into immune responses to CAFs in pigs, and highlights that adjuvant development should ideally be carried out in the intended species of interest or in models with high predictive validity/translational value.


Asunto(s)
Adyuvantes Inmunológicos , Inmunoglobulina G , Liposomas , Animales , Liposomas/inmunología , Liposomas/administración & dosificación , Porcinos , Adyuvantes Inmunológicos/administración & dosificación , Inmunoglobulina G/sangre , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Anticuerpos Antibacterianos/sangre , Adyuvantes de Vacunas/administración & dosificación , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Poli I-C/administración & dosificación , Poli I-C/inmunología , Chlamydia/inmunología , Tretinoina/administración & dosificación , Tretinoina/inmunología , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/administración & dosificación , Agentes Inmunomoduladores/administración & dosificación , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/inmunología , Inmunidad Celular , Glucolípidos
6.
Elife ; 122024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385642

RESUMEN

CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA) +QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA +QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p<0.05). Notably, interferon γ+Env-specific Tfh responses were consistently higher with gp140 in MPLA +QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.


Asunto(s)
Vacunas contra el SIDA , VIH-1 , Animales , Macaca mulatta , Quimiocina CXCL10 , Anticuerpos Anti-VIH , ADN
7.
J Infect Dis ; 206(11): 1660-9, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22969149

RESUMEN

BACKGROUND: We conducted a clinical trial in October 2009 to evaluate the immunogenicity of the AS03-adjuvanted influenza vaccine (pH1N1 vaccine) in health care workers (HCWs). By 2 weeks after vaccination, 97% had protective hemagglutinin inhibition (HI) titers (≥ 40) however, 16% were low responders (LR) and failed to maintain a protective response 90 days after vaccination. METHODS: We analyzed the humoral responses (HI, antibody-secreting cell [ASC], and serum immunoglobulin G [IgG]) in 15 LRs and 25 control HCWs. Twelve LRs were revaccinated with the pH1N1 vaccine, and 7 were subsequently vaccinated with the 2010 seasonal trivalent influenza vaccine. We conducted a long-term analysis of the humoral and CD4(+) T-helper (Th) 1 responses. RESULTS: The LRs had a slower HI antibody response than the control HCWs, with protective antibody titers not reached until 2 weeks after vaccination in the majority of the participants. The LRs also had significantly lower IgG ASCs at day 7 and HA1-specific serum IgG responses at day 21, compared with the control HCWs. Revaccination with the pH1N1 vaccine elicited rapid HI antibody, ASC, memory B cell, and multifunctional CD4(+) Th1 cell responses. CONCLUSION: This study shows that revaccination of low-responding HCWs with the pH1N1 vaccine is required for maintaining long-term protection. CLINICAL TRIALS REGISTRATION: NCT01003288.


Asunto(s)
Inmunización Secundaria , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/inmunología , Pruebas de Inhibición de Hemaglutinación , Humanos , Inmunidad Humoral , Inmunoglobulina G/sangre
8.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37503150

RESUMEN

CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA)+QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA+QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p <0.05). Notably, interferon γ+ Env-specific Tfh responses were consistently higher with gp140 in MPLA+QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.

9.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865310

RESUMEN

After clean drinking water, vaccination is the most impactful global health intervention. However, development of new vaccines against difficult-to-target diseases is hampered by the lack of diverse adjuvants for human use. Of particular interest, none of the currently available adjuvants induce Th17 cells. Here, we develop and test an improved liposomal adjuvant, termed CAF®10b, that incorporates a TLR-9 agonist. In a head-to-head study in non-human primates (NHPs), immunization with antigen adjuvanted with CAF®10b induced significantly increased antibody and cellular immune responses compared to previous CAF® adjuvants, already in clinical trials. This was not seen in the mouse model, demonstrating that adjuvant effects can be highly species specific. Importantly, intramuscular immunization of NHPs with CAF®10b induced robust Th17 responses that were observed in circulation half a year after vaccination. Furthermore, subsequent instillation of unadjuvanted antigen into the skin and lungs of these memory animals led to significant recall responses including transient local lung inflammation observed by Positron Emission Tomography-Computed Tomography (PET-CT), elevated antibody titers, and expanded systemic and local Th1 and Th17 responses, including >20% antigen-specific T cells in the bronchoalveolar lavage. Overall, CAF®10b demonstrated an adjuvant able to drive true memory antibody, Th1 and Th17 vaccine-responses across rodent and primate species, supporting its translational potential.

10.
Front Immunol ; 14: 941281, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756130

RESUMEN

SARS-CoV-2 continues to pose a threat to human health as new variants emerge and thus a diverse vaccine pipeline is needed. We evaluated SARS-CoV-2 HexaPro spike protein formulated in Alhydrogel® (aluminium oxyhydroxide) in Syrian hamsters, using an accelerated two dose regimen (given 10 days apart) and a standard regimen (two doses given 21 days apart). Both regimens elicited spike- and RBD-specific IgG antibody responses of similar magnitude, but in vitro virus neutralization was low or undetectable. Despite this, the accelerated two dose regimen offered reduction in viral load and protected against lung pathology upon challenge with homologous SARS-CoV-2 virus (Wuhan-Hu-1). This highlights that vaccine-induced protection against SARS-CoV-2 disease can be obtained despite low neutralizing antibody levels and suggests that accelerated vaccine schedules may be used to confer rapid protection against SARS-CoV-2 disease.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , Hidróxido de Aluminio , Mesocricetus , COVID-19/prevención & control , Vacunación , Anticuerpos Neutralizantes
11.
iScience ; 26(2): 105949, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36644321

RESUMEN

Vaccines have relieved the public health burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and globally inactivated vaccines are most widely used. However, poor vaccination accessibility and waning immunity maintain the pandemic, driving emergence of variants. We developed an inactivated SARS-CoV-2 (I-SARS-CoV-2) vaccine based on a viral isolate with the Spike mutation D614G, produced in Vero cells in a scalable bioreactor, inactivated with ß-propiolactone, purified by membrane-based steric exclusion chromatography, and adjuvanted with MF59-like adjuvant AddaVax. I-SARS-CoV-2 and a derived split vaccine induced persisting neutralizing antibodies in mice; moreover, lyophilized antigen was immunogenic. Following homologous challenge, I-SARS-CoV-2 immunized hamsters were protected against disease and lung pathology. In contrast with reports for widely used vaccines, hamster plasma similarly neutralized the homologous and the Delta (B.1.617.2) variant viruses, whereas the Omicron (B.1.1.529) variant was neutralized less efficiently. Applied bioprocessing approaches offer advantages regarding scalability and production, potentially benefitting worldwide vaccine coverage.

12.
Adv Healthc Mater ; 11(11): e2102508, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35124896

RESUMEN

Chlamydia trachomatis is the most prevalent sexually transmitted disease of bacterial origin. The high number of asymptomatic cases makes it difficult to stop the transmission, requiring vaccine development. Herein, a strategy is proposed to obtain local genital tract immunity against C. trachomatis through parenteral prime and sublingual boost. Subcutaneous administration of chlamydia CTH522 subunit vaccine loaded in the adjuvant CAF01 is combined with sublingual administration of CTH522 loaded in a novel thermosensitive and mucoadhesive hydrogel. Briefly, a ternary optimized hydrogel (OGEL) with desirable biological and physicochemical properties is obtained using artificial intelligence techniques. This formulation exhibits a high gel strength and a strong mucoadhesive, adhesive and cohesive nature. The thermosensitive properties of the hydrogel facilitate application under the tongue. Meanwhile the fast gelation at body temperature together with rapid antigen release should avoid CTH522 leakage by swallowing and increase the contact with sublingual tissue, thus promoting absorption. In vivo studies demonstrate that parenteral-sublingual prime-boost immunization, using CAF01 and OGEL as CTH522 vaccine carriers, shows a tendency to increase cellular (Th1/Th17) immune responses when compared to mucosal or parenteral vaccination alone. Furthermore, parenteral prime with CAF01/CTH522 followed by sublingual boosting with OGEL/CTH522 elicits a local IgA response in the genital tract.


Asunto(s)
Chlamydia trachomatis , Hidrogeles , Adyuvantes Inmunológicos , Administración Sublingual , Animales , Inteligencia Artificial , Hidrogeles/farmacología , Ratones , Ratones Endogámicos BALB C
13.
EBioMedicine ; 84: 104248, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36088218

RESUMEN

BACKGROUND: Licensed vaccines against SARS-CoV-2 effectively protect against severe disease, but display incomplete protection against virus transmission. Mucosal vaccines providing immune responses in the upper airways are one strategy to protect against transmission. METHODS: We administered Spike HexaPro trimer formulated in a cationic liposomal adjuvant as a parenteral (subcutaneous - s.c.) prime - intranasal boost regimen to elicit airway mucosal immune responses and evaluated this in a Syrian hamster model of virus transmission. FINDINGS: Parenteral prime - intranasal boost elicited high-magnitude serum neutralizing antibody responses and IgA responses in the upper respiratory tract. The vaccine strategy protected against virus in the lower airways and lung pathology, but virus could still be detected in the upper airways. Despite this, the parenteral prime - intranasal booster vaccine effectively protected against onward SARS-CoV-2 transmission. INTERPRETATION: This study suggests that parenteral-prime mucosal boost is an effective strategy for protecting against SARS-CoV-2 infection and highlights that protection against virus transmission may be obtained despite incomplete clearance of virus from the upper respiratory tract. It should be noted that protection against onward transmission was not compared to standard parenteral prime-boost, which should be a focus for future studies. FUNDING: This work was primarily supported by the European Union Horizon 2020 research and innovation program under grant agreement no. 101003653.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina A
14.
Eur J Pharm Biopharm ; 165: 293-305, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34044110

RESUMEN

The degree of antigen adsorption to adjuvants in subunit vaccines may significantly influence the immune responses they induce upon vaccination. Commonly used approaches for studying how the level of adsorption affects the induction of antigen-specific immune responses include (i) using adjuvants with different abilities to adsorb antigens, and (ii) comparing different antigens selected based on their ability to adsorb to the adjuvant. A weakness of these approaches is that not only the antigen adsorption level is varied, but also other important functional factors such as adjuvant composition and/or the B/T cell epitopes, which may affect immunogenicity. Hence, we investigated how changing the adsorption capabilities of a single antigen to an adjuvant influenced the vaccine-induced immune responses. The model antigen lysozyme, which displays a positive net charge at physiological pH due to an isoelectric point (pI) of 11, was succinylated to different extents, resulting in a reduction of the pI value to 4.4-5.9, depending on the degree of succinylation. A pronounced inverse correlation was found between the pI value of the succinylated lysozyme analogues and the degree of adsorption to a cationic liposomal adjuvant consisting of dimethyldioctadecylammonium bromide (DDA) and trehalose dibehenate (TDB) (CAF®01). Furthermore, increased adsorption to this adjuvant correlated directly with the magnitude of lysozyme-specific Th1/Th17 immune responses induced by the vaccine in mice, while there was an inverse correlation with antibody induction. However, high lysozyme-specific antibody titers were induced with an increased antigen dose, even upon vaccination with a strongly adsorbed succinylated lysozyme analogue. Hence, these data illustrate that the degree of lysozyme adsorption to CAF®01 strongly affects the quality of the resulting immune responses.


Asunto(s)
Adyuvantes Inmunológicos/química , Antígenos/inmunología , Vacunas de Subunidad/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adsorción , Animales , Antígenos/administración & dosificación , Antígenos/química , Cationes/administración & dosificación , Cationes/química , Femenino , Glucolípidos/administración & dosificación , Glucolípidos/química , Inmunogenicidad Vacunal , Liposomas , Ratones , Modelos Animales , Muramidasa/administración & dosificación , Muramidasa/química , Muramidasa/inmunología , Compuestos de Amonio Cuaternario/administración & dosificación , Compuestos de Amonio Cuaternario/química , Células TH1 , Células Th17 , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/química
15.
EBioMedicine ; 63: 103197, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33422991

RESUMEN

BACKGROUND: SARS-CoV-2 has caused a global pandemic, infecting millions of people. A safe, effective vaccine is urgently needed and remains a global health priority. Subunit vaccines are used successfully against other viruses when administered in the presence of an effective adjuvant. METHODS: We evaluated three different clinically tested adjuvant systems in combination with the SARS-CoV-2 pre-fusion stabilized (S-2P) spike protein using a one-dose regimen in mice. FINDINGS: Whilst spike protein alone was only weakly immunogenic, the addition of either Aluminum hydroxide, a squalene based oil-in-water emulsion system (SE) or a cationic liposome-based adjuvant significantly enhanced antibody responses against the spike receptor binding domain (RBD). Kinetics of antibody responses differed, with SE providing the most rapid response. Neutralizing antibodies developed after a single immunization in all adjuvanted groups with ID50 titers ranging from 86-4063. Spike-specific CD4 T helper responses were also elicited, comprising mainly of IFN-γ and IL-17 producing cells in the cationic liposome adjuvanted group, and more IL-5- and IL-10-secreting cells in the AH group. INTERPRETATION: These results demonstrate that adjuvanted spike protein subunit vaccine is a viable strategy for rapidly eliciting SARS-CoV-2 neutralizing antibodies and CD4 T cell responses of various qualities depending on the adjuvant used, which can be explored in further vaccine development against COVID-19. FUNDING: This work was supported by the European Union Horizon 2020 research and innovation program under grant agreement no. 101003653.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Linfocitos T CD4-Positivos/inmunología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/química , Hidróxido de Aluminio/química , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , COVID-19/patología , COVID-19/virología , Femenino , Inmunización , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Liposomas/química , Ratones , Ratones Endogámicos C57BL , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Escualeno/química , Vacunas de Subunidad/inmunología
16.
Cell Mol Immunol ; 18(5): 1197-1210, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33762685

RESUMEN

One of the main goals of vaccine research is the development of adjuvants that can enhance immune responses and are both safe and biocompatible. We explored the application of the natural polymer hyaluronan (HA) as a promising immunological adjuvant for protein-based vaccines. Chemical conjugation of HA to antigens strongly increased their immunogenicity, reduced booster requirements, and allowed antigen dose sparing. HA-based bioconjugates stimulated robust and long-lasting humoral responses without the addition of other immunostimulatory compounds and proved highly efficient when compared to other adjuvants. Due to its intrinsic biocompatibility, HA allowed the exploitation of different injection routes and did not induce inflammation at the inoculation site. This polymer promoted rapid translocation of the antigen to draining lymph nodes, thus facilitating encounters with antigen-presenting cells. Overall, HA can be regarded as an effective and biocompatible adjuvant to be exploited for the design of a wide variety of vaccines.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Ácido Hialurónico/farmacología , Vacunas/farmacología , Alarminas/metabolismo , Animales , Materiales Biocompatibles/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Fluorescencia , Ácido Hialurónico/química , Inmunidad Humoral/efectos de los fármacos , Inflamación/patología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Peso Molecular , Ovalbúmina/inmunología , Factores de Tiempo
17.
Front Immunol ; 11: 579761, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072125

RESUMEN

Aluminum salts and squalene based oil-in-water emulsions (SE) are widely used adjuvants in licensed vaccines, yet their mechanisms are not fully known. Here we report that induction of antibody responses displays different kinetics dependent on the adjuvant used. SE facilitated a rapid antibody response in contrast to aluminum hydroxide (AH) and the depot-forming cationic liposome-based adjuvant (CAF01). Antigen given with the SE adjuvant rapidly reached follicular B cells in the draining lymph node, whereas antigen formulated in AH or CAF01 remained at the site of injection as a depot. Removal of the injection site early after immunization abrogated antibody responses only when antigen was given in the depot-forming adjuvants. Despite initial delays in B cell activation and germinal center (GC) formation when antigen was given in depot-forming adjuvants, the antibody levels reached higher magnitudes than when the antigen was formulated in SE. This study demonstrates that the kinetic aspect of antibody responses is critical in adjuvant benchmarking and suggests that the optimal vaccination regime depends on the adjuvant used.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Centro Germinal/inmunología , Liposomas/administración & dosificación , Adyuvantes Inmunológicos/química , Aluminio/química , Animales , Anticuerpos/metabolismo , Formación de Anticuerpos , Linfocitos B/inmunología , Femenino , Activación de Linfocitos , Ratones , Escualeno/química , Vacunación , Vacunas
19.
ILAR J ; 59(3): 309-322, 2018 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-30624655

RESUMEN

Many different adjuvants are currently being developed for subunit vaccines against a number of pathogens and diseases. Rational design is increasingly used to develop novel vaccine adjuvants, which requires extensive knowledge of, for example, the desired immune responses, target antigen-presenting cell subsets, their localization, and expression of relevant pattern-recognition receptors. The adjuvant mechanism of action and efficacy are usually evaluated in animal models, where mice are by far the most used. In this review, we present methods for assessing adjuvant efficacy and function in animal models: (1) whole-body biodistribution evaluated by using fluorescently and radioactively labeled vaccine components; (2) association and activation of immune cell subsets at the injection site, in the draining lymph node, and the spleen; (4) adaptive immune responses, such as cytotoxic T-lymphocytes, various T-helper cell subsets, and antibody responses, which may be quantitatively evaluated using ELISA, ELISPOT, and immunoplex assays and qualitatively evaluated using flow cytometric and single cell sequencing assays; and (5) effector responses, for example, antigen-specific cytotoxic potential of CD8+ T cells and antibody neutralization assays. While the vaccine-induced immune responses in mice often correlate with the responses induced in humans, there are instances where immune responses detected in mice are not translated to the human situation. We discuss some examples of correlation and discrepancy between mouse and human immune responses and how to understand them.


Asunto(s)
Vacunas , Adyuvantes Inmunológicos , Animales , Linfocitos T CD8-positivos/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunidad Celular/inmunología , Inmunidad Celular/fisiología
20.
Front Immunol ; 9: 898, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760705

RESUMEN

There is an unmet medical need for new subunit vaccines that induce cytotoxic T-lymphocyte (CTL) responses to prevent infection with a number of pathogens. However, stimulation of CTL responses via clinically acceptable subcutaneous (s.c.) and intramuscular (i.m.) injection is challenging. Recently, we designed a liposomal adjuvant [cationic adjuvant formulation (CAF)09] composed of the cationic lipid dimethyldioctadecylammonium (DDA) bromide, a synthetic monomycoloyl glycerol analog and polyinosinic:polycytidylic acid, which induce strong CTL responses to peptide and protein antigens after intraperitoneal administration. By contrast, CAF09 does not stimulate CTL responses upon s.c. or i.m. injection because the vaccine forms a depot that remains at the injection site. Hence, we engineered a series of nanoemulsions (CAF24a-c) based on the active components of CAF09. The oil phase consisted of biodegradable squalane, and the surface charge was varied systematically by replacing DDA with zwitterionic distearoylphosphoethanolamine. We hypothesized that the nanoemulsions drain to the lymph nodes to a larger extent than CAF09, upon s.c. co-administration with the model antigen chicken egg ovalbumin (OVA). This results in an increased dose fraction that reaches the draining lymph nodes (dLNs) and subsequently activates cross-presenting dendritic cells (DCs), which can prime CTL responses. Indeed, the nanoemulsions induced antigen-specific CD8+ T-cell responses, which were significantly higher than those stimulated by OVA adjuvanted with CAF09. We explain this by the observed rapid localization of CAF24a in the dLNs and the subsequent association with conventional DCs, which promotes induction of CTL responses. Uptake of CAF24a was not specific for DCs, because CAF24a was also detected with B cells and macrophages. No measurable dose fraction of CAF09 was detected in the dLNs within the study period, and CAF09 formed a depot at the site of injection. Importantly, s.c. vaccination with OVA adjuvanted with CAF24a induced significant levels of specific lysis of antigen-pulsed splenocytes were induced after, which was not observed for OVA adjuvanted with CAF09. Thus, CAF24a is a promising adjuvant for induction of CTL responses upon s.c. and i.m. immunization, and it offers interesting perspectives for the design of vaccines against pathogens for which CTL responses are required to prevent infection.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Poli I-C/inmunología , Linfocitos T Citotóxicos/inmunología , Vacunas de Subunidad/inmunología , Adyuvantes Inmunológicos/síntesis química , Adyuvantes Inmunológicos/química , Animales , Emulsiones , Femenino , Liposomas , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Receptor Toll-Like 3/inmunología , Vacunas de Subunidad/síntesis química , Vacunas de Subunidad/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA