RESUMEN
PEX5, the peroxisomal protein shuttling receptor, binds newly synthesized proteins in the cytosol and transports them to the organelle. During its stay at the peroxisomal protein translocon, PEX5 is monoubiquitinated at its cysteine 11 residue, a mandatory modification for its subsequent ATP-dependent extraction back into the cytosol. The reason why a cysteine and not a lysine residue is the ubiquitin acceptor is unknown. Using an established rat liver-based cell-free in vitro system, we found that, in contrast to wild-type PEX5, a PEX5 protein possessing a lysine at position 11 is polyubiquitinated at the peroxisomal membrane, a modification that negatively interferes with the extraction process. Wild-type PEX5 cannot retain a polyubiquitin chain because ubiquitination at cysteine 11 is a reversible reaction, with the E2-mediated deubiquitination step presenting faster kinetics than PEX5 polyubiquitination. We propose that the reversible nonconventional ubiquitination of PEX5 ensures that neither the peroxisomal protein translocon becomes obstructed with polyubiquitinated PEX5 nor is PEX5 targeted for proteasomal degradation.
Asunto(s)
Cisteína , Lisina , Animales , Ratas , Proteínas Portadoras/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/química , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Transporte de Proteínas , UbiquitinaciónRESUMEN
PEX1 and PEX6 are two members of the ATPases associated with diverse cellular activities (AAA) family and the core components of the receptor export module of the peroxisomal matrix protein import machinery. Their role is to extract monoubiquitinated PEX5, the peroxisomal protein-shuttling receptor, from the peroxisomal membrane docking/translocation module (DTM), so that a new cycle of protein transportation can start. Recent data have shown that PEX1 and PEX6 form a heterohexameric complex that unfolds substrates by processive threading. However, whether the natural substrate of the PEX1-PEX6 complex is monoubiquitinated PEX5 (Ub-PEX5) itself or some Ub-PEX5-interacting component(s) of the DTM remains unknown. In this work, we used an established cell-free in vitro system coupled with photoaffinity cross-linking and protein PEGylation assays to address this problem. We provide evidence suggesting that DTM-embedded Ub-PEX5 interacts directly with both PEX1 and PEX6 through its ubiquitin moiety and that the PEX5 polypeptide chain is globally unfolded during the ATP-dependent extraction event. These findings strongly suggest that DTM-embedded Ub-PEX5 is a bona fide substrate of the PEX1-PEX6 complex.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Citosol/metabolismo , Proteínas de la Membrana/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Mapas de Interacción de Proteínas , Humanos , Modelos Moleculares , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/química , Peroxisomas/metabolismo , Transporte de Proteínas , Desplegamiento Proteico , Ubiquitina/metabolismo , UbiquitinaciónRESUMEN
In contrast to many protein translocases that use ATP or GTP hydrolysis as the driving force to transport proteins across biological membranes, the peroxisomal matrix protein import machinery relies on a regulated self-assembly mechanism for this purpose and uses ATP hydrolysis only to reset its components. The ATP-dependent protein complex in charge of resetting this machinery-the Receptor Export Module (REM)-comprises two members of the "ATPases Associated with diverse cellular Activities" (AAA+) family, PEX1 and PEX6, and a membrane protein that anchors the ATPases to the organelle membrane. In recent years, a large amount of data on the structure/function of the REM complex has become available. Here, we discuss the main findings and their mechanistic implications.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Animales , Humanos , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/química , Transporte de ProteínasRESUMEN
A remarkable property of the machinery for import of peroxisomal matrix proteins is that it can accept already folded proteins as substrates. This import involves binding of newly synthesized proteins by cytosolic peroxisomal biogenesis factor 5 (PEX5) followed by insertion of the PEX5-cargo complex into the peroxisomal membrane at the docking/translocation module (DTM). However, how these processes occur remains largely unknown. Here, we used truncated PEX5 molecules to probe the DTM architecture. We found that the DTM can accommodate a larger number of truncated PEX5 molecules comprising amino acid residues 1-197 than full-length PEX5 molecules. A shorter PEX5 version (PEX5(1-125)) still interacted correctly with the DTM; however, this species was largely accessible to exogenously added proteinase K, suggesting that this protease can access the DTM occupied by a small PEX5 protein. Interestingly, the PEX5(1-125)-DTM interaction was inhibited by a polypeptide comprising PEX5 residues 138-639. Apparently, the DTM can recruit soluble PEX5 through interactions with different PEX5 domains, suggesting that the PEX5-DTM interactions are to some degree fuzzy. Finally, we found that the interaction between PEX5 and PEX14, a major DTM component, is stable at pH 11.5. Thus, there is no reason to assume that the hitherto intriguing resistance of DTM-bound PEX5 to alkaline extraction reflects its direct contact with the peroxisomal lipid bilayer. Collectively, these results suggest that the DTM is best described as a large cavity-forming protein assembly into which cytosolic PEX5 can enter to release its cargo.
Asunto(s)
Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Transporte Biológico , Endopeptidasa K/metabolismo , Eliminación de Gen , Humanos , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Mutación , Mutación Missense , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , SolubilidadRESUMEN
Cell-free in vitro systems are invaluable tools to study the molecular mechanisms of protein translocation across biological membranes. We have been using such a strategy to dissect the mechanism of the mammalian peroxisomal matrix protein import machinery. Here, we provide a detailed protocol to import proteins containing a peroxisomal targeting signal type 2 (PTS2) into the organelle. The in vitro system consists of incubating a 35S-labeled reporter protein with a post-nuclear supernatant from rat/mouse liver. At the end of the incubation, the organelle suspensions are generally treated with an aggressive protease to degrade reporter proteins that did not enter peroxisomes, and the organelles are isolated by centrifugation and analyzed by SDS-PAGE and autoradiography. This in vitro system is particularly suited to characterize the functional consequences of PEX5 and PEX7 mutations found in patients affected with a peroxisomal biogenesis disorder.
Asunto(s)
Trastorno Peroxisomal , Señales de Direccionamiento al Peroxisoma , Ratas , Ratones , Animales , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Transporte de Proteínas , Peroxisomas/metabolismo , Trastorno Peroxisomal/metabolismo , Mamíferos/metabolismoRESUMEN
Despite intensive research on peroxisome biochemistry, the role of glutathione in peroxisomal redox homeostasis has remained a matter of speculation for many years, and only recently has this issue started to be experimentally addressed. Here, we summarize and compare data from several organisms on the peroxisome-glutathione topic. It is clear from this comparison that the repertoire of glutathione-utilizing enzymes in peroxisomes of different organisms varies widely. In addition, the available data suggest that the kinetic connectivity between the cytosolic and peroxisomal pools of glutathione may also be different in different organisms, with some possessing a peroxisomal membrane that is promptly permeable to glutathione whereas in others this may not be the case. However, regardless of the differences, the picture that emerges from all these data is that glutathione is a crucial component of the antioxidative system that operates inside peroxisomes in all organisms.
Asunto(s)
Glutatión , Peroxisomas , Peroxisomas/metabolismo , Glutatión/metabolismo , Antioxidantes/metabolismo , Oxidación-Reducción , HomeostasisRESUMEN
The AAA ATPases PEX1â¢PEX6 extract PEX5, the peroxisomal protein shuttling receptor, from the peroxisomal membrane so that a new protein transport cycle can start. Extraction requires ubiquitination of PEX5 at residue 11 and involves a threading mechanism, but how exactly this occurs is unclear. We used a cell-free in vitro system and a variety of engineered PEX5 and ubiquitin molecules to challenge the extraction machinery. We show that PEX5 modified with a single ubiquitin is a substrate for extraction and extend previous findings proposing that neither the N- nor the C-terminus of PEX5 are required for extraction. Chimeric PEX5 molecules possessing a branched polypeptide structure at their C-terminal domains can still be extracted from the peroxisomal membrane thus suggesting that the extraction machinery can thread more than one polypeptide chain simultaneously. Importantly, we found that the PEX5-linked monoubiquitin is unfolded at a pre-extraction stage and, accordingly, an intra-molecularly cross-linked ubiquitin blocked extraction when conjugated to residue 11 of PEX5. Collectively, our data suggest that the PEX5-linked monoubiquitin is the extraction initiator and that the complete ubiquitin-PEX5 conjugate is threaded by PEX1â¢PEX6.
Asunto(s)
Proteínas de la Membrana , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Peroxisomas , Ubiquitina , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de la Membrana/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/metabolismo , Transporte de Proteínas , Ubiquitina/metabolismo , Ubiquitinación , Humanos , Sistema Libre de CélulasRESUMEN
Despite the large amounts of H2O2 generated in mammalian peroxisomes, cysteine residues of intraperoxisomal proteins are maintained in a reduced state. The biochemistry behind this phenomenon remains unexplored, and simple questions such as "is the peroxisomal membrane permeable to glutathione?" or "is there a thiol-disulfide oxidoreductase in the organelle matrix?" still have no answer. We used a cell-free in vitro system to equip rat liver peroxisomes with a glutathione redox sensor. The organelles were then incubated with glutathione solutions of different redox potentials and the oxidation/reduction kinetics of the redox sensor was monitored. The data suggest that the mammalian peroxisomal membrane is promptly permeable to both reduced and oxidized glutathione. No evidence for the presence of a robust thiol-disulfide oxidoreductase in the peroxisomal matrix could be found. Also, prolonged incubation of organelle suspensions with glutaredoxin 1 did not result in the internalization of the enzyme. To explore a potential role of glutathione in intraperoxisomal redox homeostasis we performed kinetic simulations. The results suggest that even in the absence of a glutaredoxin, glutathione is more important in protecting cysteine residues of matrix proteins from oxidation by H2O2 than peroxisomal catalase itself.
Asunto(s)
Peroxisomas , Proteína Disulfuro Reductasa (Glutatión) , Ratas , Animales , Disulfuro de Glutatión/metabolismo , Peroxisomas/metabolismo , Cisteína/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/análisis , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Peróxido de Hidrógeno/metabolismo , Glutatión/metabolismo , Oxidación-Reducción , Proteínas/metabolismo , Mamíferos/metabolismo , HomeostasisRESUMEN
Despite having a membrane that is impermeable to all but the smallest of metabolites, peroxisomes acquire their newly synthesized (cytosolic) matrix proteins in an already folded conformation. In some cases, even oligomeric proteins have been reported to translocate the organelle membrane. The protein sorting machinery that accomplishes this feat must be rather flexible and, unsurprisingly, several of its key components have large intrinsically disordered domains. Here, we provide an overview on these domains and their interactions trying to infer their functional roles in this protein sorting pathway.
Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Peroxisomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Humanos , Dominios Proteicos , Transporte de Proteínas , Transducción de SeñalRESUMEN
PEX13 and PEX14 are two core components of the so-called peroxisomal docking/translocation module, the transmembrane hydrophilic channel through which newly synthesized peroxisomal proteins are translocated into the organelle matrix. The two proteins interact with each other and with PEX5, the peroxisomal matrix protein shuttling receptor, through relatively well characterized domains. However, the topologies of these membrane proteins are still poorly defined. Here, we subjected proteoliposomes containing PEX13 or PEX14 and purified rat liver peroxisomes to protease-protection assays and analyzed the protected protein fragments by mass spectrometry, Edman degradation and western blotting using antibodies directed to specific domains of the proteins. Our results indicate that PEX14 is a bona fide intrinsic membrane protein with a Nin -Cout topology, and that PEX13 adopts a Nout -Cin topology, thus exposing its carboxy-terminal Src homology 3 [SH3] domain into the organelle matrix. These results reconcile several enigmatic findings previously reported on PEX13 and PEX14 and provide new insights into the organization of the peroxisomal protein import machinery. ENZYMES: Trypsin, EC3.4.21.4; Proteinase K, EC3.4.21.64; Tobacco etch virus protease, EC3.4.22.44.
Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Animales , Liposomas/metabolismo , Masculino , Proteínas de la Membrana/genética , Transporte de Proteínas , Ratas , Ratas Wistar , Proteínas Recombinantes/genética , Proteínas Represoras/genéticaRESUMEN
Protease protection assays are powerful tools to determine the topology of organelle proteins. Their simplicity, together with the fact that they are particularly suited to characterize endogenous proteins, are their major advantages and the reason why these assays have been in use for so many years. Here, we provide a detailed protocol to use with mammalian peroxisomes. Suggestions on how these assays can be controlled, and how to identify some technical pitfalls, are also presented.
Asunto(s)
Endopeptidasas/metabolismo , Peroxisomas/metabolismo , Proteínas/metabolismo , Endopeptidasa K/metabolismo , ProteolisisRESUMEN
Here we describe a protocol to dissect the peroxisomal matrix protein import pathway using a cell-free in vitro system. The system relies on a postnuclear supernatant (PNS), which is prepared from rat/mouse liver, to act as a source of peroxisomes and cytosolic components. A typical in vitro assay comprises the following steps: (i) incubation of the PNS with an in vitro-synthesized 35S-labeled reporter protein; (ii) treatment of the organelle suspension with a protease that degrades reporter proteins that have not associated with peroxisomes; and (iii) SDS-PAGE/autoradiography analysis. To study transport of proteins into peroxisomes, it is possible to use organelle-resident proteins that contain a peroxisomal targeting signal (PTS) as reporters in the assay. In addition, a receptor (PEX5L/S or PEX5L.PEX7) can be used to report the dynamics of shuttling proteins that mediate the import process. Thus, different but complementary perspectives on the mechanism of this pathway can be obtained. We also describe strategies to fortify the system with recombinant proteins to increase import yields and block specific parts of the machinery at a number of steps. The system recapitulates all the steps of the pathway, including mono-ubiquitination of PEX5L/S at the peroxisome membrane and its ATP-dependent export back into the cytosol by PEX1/PEX6. An in vitro import(/export) experiment can be completed in 24 h.