Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Antimicrob Agents Chemother ; 68(7): e0011224, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38888319

RESUMEN

Inhalation anthrax is the most severe form of Bacillus anthracis infection, often progressing to fatal conditions if left untreated. While recommended antibiotics can effectively treat anthrax when promptly administered, strains engineered for antibiotic resistance could render these drugs ineffective. Telavancin, a semisynthetic lipoglycopeptide antibiotic, was evaluated in this study as a novel therapeutic against anthrax disease. Specifically, the aims were to (i) assess in vitro potency of telavancin against 17 B. anthracis isolates by minimum inhibitory concentration (MIC) testing and (ii) evaluate protective efficacy in rabbits infected with a lethal dose of aerosolized anthrax spores and treated with human-equivalent intravenous telavancin doses (30 mg/kg every 12 hours) for 5 days post-antigen detection versus a humanized dose of levofloxacin and vehicle control. Blood samples were collected at various times post-infection to assess the level of bacteremia and antibody production, and tissues were collected to determine bacterial load. The animals' body temperatures were also recorded. Telavancin demonstrated potent bactericidal activity against all strains tested (MICs 0.06-0.125 µg/mL). Further, telavancin conveyed 100% survival in this model and cleared B. anthracis from the bloodstream and organ tissues more effectively than a humanized dose of levofloxacin. Collectively, the low MICs against all strains tested and rapid bactericidal in vivo activity demonstrate that telavancin has the potential to be an effective alternative for the treatment or prophylaxis of anthrax infection.


Asunto(s)
Aminoglicósidos , Carbunco , Antibacterianos , Bacillus anthracis , Lipoglucopéptidos , Pruebas de Sensibilidad Microbiana , Infecciones del Sistema Respiratorio , Animales , Lipoglucopéptidos/farmacología , Conejos , Carbunco/tratamiento farmacológico , Carbunco/microbiología , Carbunco/mortalidad , Bacillus anthracis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Aminoglicósidos/farmacología , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiología , Modelos Animales de Enfermedad , Levofloxacino/farmacología , Femenino
2.
J Infect Dis ; 228(Suppl 7): S701-S711, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37474248

RESUMEN

Marburg virus (MARV) causes a hemorrhagic fever disease in human and nonhuman primates with high levels of morbidity and mortality. Concerns about weaponization of aerosolized MARV have spurred the development of nonhuman primate (NHP) models of aerosol exposure. To address the potential threat of aerosol exposure, a monoclonal antibody that binds MARV glycoprotein was tested, MR186YTE, for its efficacy as a prophylactic. MR186YTE was administered intramuscularly to NHPs at 15 or 5 mg/kg 1 month prior to MARV aerosol challenge. Seventy-five percent (3/4) of the 15 mg/kg dose group and 50% (2/4) of the 5 mg/kg dose group survived. Serum analyses showed that the NHP dosed with 15 mg/kg that succumbed to infection developed an antidrug antibody response and therefore had no detectable MR186YTE at the time of challenge. These results suggest that intramuscular dosing of mAbs may be a clinically useful prophylaxis for MARV aerosol exposure.


Asunto(s)
Enfermedad del Virus de Marburg , Marburgvirus , Animales , Humanos , Anticuerpos Monoclonales , Primates , Aerosoles
3.
J Infect Dis ; 228(Suppl 7): S604-S616, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37145930

RESUMEN

BACKGROUND: Highly pathogenic filoviruses such as Ebola virus (EBOV) hold capacity for delivery by artificial aerosols, and thus potential for intentional misuse. Previous studies have shown that high doses of EBOV delivered by small-particle aerosol cause uniform lethality in nonhuman primates (NHPs), whereas only a few small studies have assessed lower doses in NHPs. METHODS: To further characterize the pathogenesis of EBOV infection via small-particle aerosol, we challenged cohorts of cynomolgus monkeys with low doses of EBOV variant Makona, which may help define risks associated with small particle aerosol exposures. RESULTS: Despite using challenge doses orders of magnitude lower than previous studies, infection via this route was uniformly lethal across all cohorts. Time to death was delayed in a dose-dependent manner between aerosol-challenged cohorts, as well as in comparison to animals challenged via the intramuscular route. Here, we describe the observed clinical and pathological details including serum biomarkers, viral burden, and histopathological changes leading to death. CONCLUSIONS: Our observations in this model highlight the striking susceptibility of NHPs, and likely humans, via small-particle aerosol exposure to EBOV and emphasize the need for further development of diagnostics and postexposure prophylactics in the event of intentional release via deployment of an aerosol-producing device.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Animales , Macaca fascicularis , Aerosoles , Carga Viral
4.
J Infect Dis ; 218(10): 1602-1610, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-29912426

RESUMEN

Background: Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that can cause severe respiratory illness and encephalitis in humans. Transmission occurs through consumption of NiV-contaminated foods, and contact with NiV-infected animals or human body fluids. However, it is unclear whether aerosols derived from aforesaid sources or others also contribute to transmission, and current knowledge on NiV-induced pathogenicity after small-particle aerosol exposure is still limited. Methods: Infectivity, pathogenicity, and real-time dissemination of aerosolized NiV in Syrian hamsters was evaluated using NiV-Malaysia (NiV-M) and/or its recombinant expressing firefly luciferase (rNiV-FlucNP). Results: Both viruses had an equivalent pathogenicity in hamsters, which developed respiratory and neurological symptoms of disease, similar to using intranasal route, with no direct correlations to the dose. We showed that virus replication was predominantly initiated in the lower respiratory tract and, although delayed, also intensely in the oronasal cavity and possibly the brain, with gradual increase of signal in these regions until at least day 5-6 postinfection. Conclusion: Hamsters infected with small-particle aerosolized NiV undergo similar clinical manifestations of the disease as previously described using liquid inoculum, and exhibit histopathological lesions consistent with NiV patient reports. NiV droplets could therefore play a role in transmission by close contact.


Asunto(s)
Aerosoles/administración & dosificación , Infecciones por Henipavirus , Virus Nipah/patogenicidad , Administración por Inhalación , Animales , Cricetinae , Modelos Animales de Enfermedad , Infecciones por Henipavirus/diagnóstico por imagen , Infecciones por Henipavirus/patología , Infecciones por Henipavirus/transmisión , Infecciones por Henipavirus/virología , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/patología , Pulmón/virología , Mesocricetus , Imagen Óptica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
bioRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38293171

RESUMEN

Yersinia pestis , one of the deadliest bacterial pathogens ever known, is responsible for three plague pandemics and several epidemics, with over 200 million deaths during recorded history. Due to high genomic plasticity, Y. pestis is amenable to genetic mutations as well as genetic engineering that can lead to the emergence or intentional development of pan-drug resistant strains. The dissemination of such Y. pestis strains could be catastrophic, with public health consequences far more daunting than those caused by the recent COVID-19 pandemic. Thus, there is an urgent need to develop novel, safe, and effective treatment approaches for managing Y. pestis infections. This includes infections by antigenically distinct strains for which vaccines, none FDA approved yet, may not be effective, and those that cannot be controlled by approved antibiotics. Lytic bacteriophages provide one such alternative approach. In this study, we examined post-exposure efficacy of a bacteriophage cocktail, YPP-401, to combat pneumonic plague caused by Y. pestis CO92. YPP-401 is a four-phage preparation with a 100% lytic activity against a panel of 68 genetically diverse Y. pestis strains. Using a pneumonic plague aerosol challenge model in gender-balanced Brown Norway rats, YPP-401 demonstrated ∼88% protection when delivered 18 hours post-exposure for each of two administration routes (i.e., intraperitoneal and intranasal) in a dose-dependent manner. Our studies suggest that YPP-401 could provide an innovative, safe, and effective approach for managing Y. pestis infections, including those caused by naturally occurring or intentionally developed strains that cannot be managed by vaccines in development and antibiotics.

6.
Microbiol Spectr ; : e0094224, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292000

RESUMEN

Yersinia pestis, one of the deadliest bacterial pathogens ever known, is responsible for three plague pandemics and several epidemics, with over 200 million deaths during recorded history. Due to high genomic plasticity, Y. pestis is amenable to genetic mutations as well as genetic engineering that can lead to the emergence or intentional development of pan-drug-resistant strains. Indeed, antibiotic-resistant strains (e.g., strains carrying multidrug-resistant or MDR plasmids) have been isolated in various countries and endemic areas. Thus, there is an urgent need to develop novel, safe, and effective treatment approaches for managing Y. pestis infections. This includes infections by antigenically distinct strains for which vaccines (none FDA approved yet) may not be effective and those that cannot be managed by currently available antibiotics. Lytic bacteriophages provide one such alternative approach. In this study, we examined post-exposure efficacy of a bacteriophage cocktail, YPP-401, to combat pneumonic plague caused by Y. pestis CO92. YPP-401 is a four-phage preparation effective against a panel of at least 68 genetically diverse Y. pestis strains. Using a pneumonic plague aerosol challenge model in gender-balanced Brown Norway rats, YPP-401 demonstrated ~88% protection when delivered 18 h post-exposure for each of two administration routes (i.e., intraperitoneal and intranasal) in a dose-dependent manner. Our studies provide proof-of-concept that YPP-401 could be an innovative, safe, and effective approach for managing Y. pestis infections, including those caused by naturally occurring or intentionally developed multidrug-resistant strains.IMPORTANCECurrently, there are no FDA-approved plague vaccines. Since antibiotic-resistant strains of Y. pestis have emerged or are being intentionally developed to be used as a biothreat agent, new treatment modalities are direly needed. Phage therapy provides a viable option against potentially antibiotic-resistant strains. Additionally, phages are nontoxic and have been approved by the FDA for use in the food industry. Our study provides the first evidence of the protective effect of a cocktail of four phages against pneumonic plague, the most severe form of disease. When treatment was initiated 18 h post infection by either the intranasal or intraperitoneal route in Brown Norway rats, up to 87.5% protection was observed. The phage cocktail had a minimal impact on a representative human microbiome panel, unlike antibiotics. This study provides strong proof-of-concept data for the further development of phage-based therapy to treat plague.

7.
ACS Infect Dis ; 7(8): 2176-2191, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34218660

RESUMEN

Anthrax is caused by Bacillus anthracis and can result in nearly 100% mortality due in part to anthrax toxin. Antimalarial amodiaquine (AQ) acts as a host-oriented inhibitor of anthrax toxin endocytosis. Here, we determined the pharmacokinetics and safety of AQ in mice, rabbits, and humans as well as the efficacy in the fly, mouse, and rabbit models of anthrax infection. In the therapeutic-intervention studies, AQ nearly doubled the survival of mice infected subcutaneously with a B. anthracis dose lethal to 60% of the animals (LD60). In rabbits challenged with 200 LD50 of aerosolized B. anthracis, AQ as a monotherapy delayed death, doubled the survival rate of infected animals that received a suboptimal amount of antibacterial levofloxacin, and reduced bacteremia and toxemia in tissues. Surprisingly, the anthrax efficacy of AQ relies on an additional host macrophage-directed antibacterial mechanism, which was validated in the toxin-independent Drosophila model of Bacillus infection. Lastly, a systematic literature review of the safety and pharmacokinetics of AQ in humans from over 2 000 published articles revealed that AQ is likely safe when taken as prescribed, and its pharmacokinetics predicts anthrax efficacy in humans. Our results support the future examination of AQ as adjunctive therapy for the prophylactic anthrax treatment.


Asunto(s)
Carbunco , Bacillus anthracis , Amodiaquina , Animales , Carbunco/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Levofloxacino , Ratones , Conejos , Revisiones Sistemáticas como Asunto
8.
Pathogens ; 9(9)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971758

RESUMEN

The use of antibiotics is a vital means of treating infections caused by the bacteria Bacillus (B.) anthracis. Importantly, with the potential future use of multidrug-resistant strains of B. anthracis as bioweapons, new antibiotics are needed as alternative therapeutics. In this blinded study, we assessed the protective efficacy of teixobactin, a recently discovered antibiotic, against inhalation anthrax infection in the adult rabbit model. New Zealand White rabbits were infected with a lethal dose of B. anthracis Ames spores via the inhalation route, and blood samples were collected at various times to assess antigenemia, bacteremia, tissue bacterial load, and antibody production. Treatments were administered upon detection of B. anthracis protective antigen in the animals' sera. For comparison, a fully protective dose of levofloxacin was used as a positive control. Rabbits treated with teixobactin showed 100% survival following infection, and the bacteremia was completely resolved by 24-48 h post-treatment. In addition, the bacterial/spore loads in tissues of the animals treated with teixobactin were either zero or dramatically less relative to that of the negative control animals. Moreover, microscopic evaluation of the tissues revealed decreased pathology following treatment with teixobactin. Overall, these results show that teixobactin was protective against inhalation anthrax infection in the rabbit model, and they indicate the potential of teixobactin as a therapeutic for the disease.

9.
Vaccine ; 38(17): 3378-3386, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32085953

RESUMEN

Live-attenuated V4020 vaccine for Venezuelan equine encephalitis virus (VEEV) containing attenuating rearrangement of the virus structural genes was evaluated in a non-human primate model for immunogenicity and protective efficacy against aerosol challenge with wild-type VEEV. The genomic RNA of V4020 vaccine virus was encoded in the pMG4020 plasmid under control of the CMV promoter and contained the capsid gene downstream from the glycoprotein genes. It also included attenuating mutations from the VEE TC83 vaccine, with E2-120Arg substitution genetically engineered to prevent reversion mutations. The population of V4020 vaccine virus derived from pMG4020-transfected Vero cells was characterized by next generation sequencing (NGS) and indicated no detectable genetic reversions. Cynomolgus macaques were vaccinated with V4020 vaccine virus. After one or two vaccinations including by intramuscular route, high levels of virus-neutralizing antibodies were confirmed with no viremia or apparent adverse reactions to vaccinations. The protective effect of vaccination was evaluated using an aerosol challenge with VEEV. After challenge, macaques had no detectable viremia, demonstrating a protective effect of vaccination with live V4020 VEEV vaccine.


Asunto(s)
Encefalomielitis Equina Venezolana , Vacunas Virales/inmunología , Aerosoles , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Macaca , Células Vero , Vacunas Virales/genética , Viremia/prevención & control
10.
NPJ Vaccines ; 2: 17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29263873

RESUMEN

The national blueprint for biodefense concluded that the United States is underprepared for biological threats. The licensed anthrax vaccine absorbed vaccine, BioThrax, requires administration of at least 3-5 intramuscular doses. The anthrax vaccine absorbed vaccine consists of complex cell-free culture filtrates of a toxigenic Bacillus anthracis strain and causes tenderness at the injection site and significant adverse events. We integrated a codon-optimized, protective antigen gene of B. anthracis (plus extracellular secretion machinery), into the chromosome of the licensed, oral, live-attenuated typhoid fever vaccineTy21a to form Ty21a-PA-01 and demonstrated excellent expression of the gene encoding protective antigen. We produced the vaccine in a 10-L fermenter; foam-dried and vialed it, and characterized the dried product. The vaccine retained ~50% viability for 20 months at ambient temperature. Sera from animals immunized by the intraperitoneal route had high levels of anti-protective antigen antibodies by enzyme-linked immunosorbent assay and anthrax lethal toxin-neutralizing activity. Immunized mice were fully protected against intranasal challenge with ~5 LD50 of B. anthracis Sterne spores, and 70% (7/10) of vaccinated rabbits were protected against aerosol challenge with 200 LD50 of B. anthracis Ames spores. There was a significant correlation between protection and antibody levels determined by enzyme-linked immunosorbent assay and toxin-neutralizing activity. These data provide the foundation for achievement of our ultimate goal, which is to develop an oral anthrax vaccine that is stable at ambient temperatures and induces the rapid onset of durable, high-level protection after a 1-week immunization regimen.

11.
Clin Vaccine Immunol ; 23(7): 586-600, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27170642

RESUMEN

Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models.


Asunto(s)
Adenovirus Humanos/genética , Portadores de Fármacos , Vacuna contra la Peste/inmunología , Peste/prevención & control , Administración Intranasal , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Modelos Animales de Enfermedad , Femenino , Esquemas de Inmunización , Inyecciones Intramusculares , Interferón gamma/metabolismo , Macaca fascicularis , Masculino , Ratones , Peste/patología , Vacuna contra la Peste/administración & dosificación , Vacuna contra la Peste/genética , Análisis de Supervivencia , Linfocitos T/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Replicación Viral , Yersinia pestis/genética , Yersinia pestis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA